Article contents
Generation of zonal flow and magnetic field in the ionospheric E-layer
Published online by Cambridge University Press: 13 July 2015
Abstract
We review the generation of zonal flow and magnetic field by coupled electromagnetic ultra-low-frequency waves in the Earth’s ionospheric E-layer. It is shown that, under typical ionospheric E-layer conditions, different planetary low-frequency waves can couple with each other. Propagation of coupled internal-gravity–Alfvén, coupled Rossby–Khantadze and coupled Rossby–Alfvén–Khantadze waves is revealed and studied. A set of appropriate equations describing the nonlinear interaction of such waves with sheared zonal flow is derived. The conclusion on the instability of short-wavelength turbulence of such coupled waves with respect to the excitation of low-frequency and large-scale perturbation of the sheared zonal flow and sheared magnetic field is deduced. The nonlinear mechanism of the instability is based on the parametric triple interaction of finite-amplitude coupled waves leading to the inverse energy cascade towards longer wavelength. The possibility of generation of an intense mean magnetic field is shown. Obtained growth rates are discussed for each case of the considered coupled waves.
- Type
- Research Article
- Information
- Copyright
- © Cambridge University Press 2015
References
- 1
- Cited by