Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-29T13:33:15.918Z Has data issue: false hasContentIssue false

Generation of magnetic fields in a positive–negative dusty plasma

Published online by Cambridge University Press:  01 April 2007

NITIN SHUKLA
Affiliation:
Institut für Theoretische Physik IV and Centre for Plasma Science and Astrophysics, Fakultät für Physik und Astronomie, Ruhr-Universität Bochum, D-44780 Bochum, Germany ([email protected]; [email protected]) Department of Physics, K. N. Government Postgraduate College, Gyanpur, Bhadohi 221304, U. P., India
P.K. SHUKLA
Affiliation:
Institut für Theoretische Physik IV and Centre for Plasma Science and Astrophysics, Fakultät für Physik und Astronomie, Ruhr-Universität Bochum, D-44780 Bochum, Germany ([email protected]; [email protected]) Max-Planck Institut für extraterrestrische Physik, D-45741 Garching, Germany Centre for Nonlinear Physics, Department of Physics, Umeå University, SE-90187 Umeå, Sweden CCLRC Centre for Fundamental Physics, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 OQX, UK SUPA Department of Physics, University of Strathclyde, Glasgow G4 ONG, UK GoLP/Centro de Física de Plasmas, Instituto Superior Técnico, Universidade Técnica de Lisboa, 1049-001 Lisboa, Portugal
C.S. LIU
Affiliation:
Institut für Theoretische Physik IV and Centre for Plasma Science and Astrophysics, Fakultät für Physik und Astronomie, Ruhr-Universität Bochum, D-44780 Bochum, Germany ([email protected]; [email protected]) Department of Physics, University of Maryland, College Park, Maryland, MD 20742-4111, USA ([email protected])
G.E. MORFILL
Affiliation:
Institut für Theoretische Physik IV and Centre for Plasma Science and Astrophysics, Fakultät für Physik und Astronomie, Ruhr-Universität Bochum, D-44780 Bochum, Germany ([email protected]; [email protected]) Max-Planck Institut für extraterrestrische Physik, D-85740 Garching, Germany ([email protected])
Rights & Permissions [Opens in a new window]

Abstract.

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It is shown that purely growing magnetic fields in a two-component dusty plasma can e generated due to the equilibrium drift of positive and negative dust grains. For this purpose, a linear dispersion relation has been derived by using the hydrodynamic equations for the charged dust fluids, the Maxwell equation and Faraday' law. The dispersion relation admits a purely growing instability, the growth rate of which is proportional to the equilibrium streaming speeds of positive and negative dust grains. A possible physical explanation for the instability is offered. Applications of our investigation to magnetic fields in the thin Martian environments, interplanetary spaces and dense molecular clouds are mentioned.

Type
Letter to the Editor
Copyright
Copyright © Cambridge University Press 2006

References

[1]Goertz, C. K. 1989 Rev. Geophys. 27, 271.Google Scholar
Horányi, M., Hartquist, T. W., Havnes, O., Mendis, D. A. and Morfill, G. E. 2004 Rev. Geophys. 42, RG4002.CrossRefGoogle Scholar
[2]Mendis, D. A. and Rosenberg, M. 1992 IEEE Trans. Plasma Sci. 20, 929; 1994 Ann. Rev. Astrophys. 32, 419.Google Scholar
[3]Shukla, P. K. and Mamun, A. A. 2002 Introduction to Dusty Plasma Physics. Bristol: Institute of Physics.Google Scholar
[4]Shukla, P. K. 2002 Dust–Plasma Interaction in Space. New York: Nova Science.Google Scholar
[5]Fortov, V., Ivlev, A. V., Khrapak, S. A., Khrapak, A. G. and Morfill, G. E. 2005 Phys. Rep. 421, 1.Google Scholar
[6]Bouchoule, A. 1999 Dusty Plasmas: Physics, Chemistry and Technological Impacts in Plasma Processing. New York: Wiley.Google Scholar
[7]Farrell, W. M. et al. . 2004 J. Geophys. Res. 109, E03004; doi: 10.1029/2003JE002088.Google Scholar
[8]Renno, N. O., Waong, A. S., Atreya, S. K., de Pater, I. and Roos-Serote, M. 2003 Geophys. Res. Lett. 30, 2140; doi: 10.1029/2003GL017879.Google Scholar
[9]Merrison, J., Jensen, J., Kinch, J., Mugfor, R. Mugfor, R. and Nornberg, P. 2004 Planet. Space Sci. 52, 279.CrossRefGoogle Scholar
[10]Shukla, P. K. 1994 Phys. Plasmas 1, 1362.CrossRefGoogle Scholar
Birk, G. T., Kopp, A. and Shukla, P. K. 1996 Phys. Plasmas 3, 3564.CrossRefGoogle Scholar
Amin, M. R., Morfill, G. E. and Shukla, P. K. 1998 Phys. Rev. E 59, 6517.CrossRefGoogle Scholar
Mamun, A. A. and Shukla, P. K. 2001 Phys. Lett. A 290, 173; 2002 Phys. Plasmas 9, 1468.CrossRefGoogle Scholar
Shukla, P. K. and Mamun, A. A. 2003 New J. Phys. 5, 17.CrossRefGoogle Scholar
[11]Havnes, O., Trφim, J., Blix, T., Mortensen, W., Nasheim, L. I., Thrane, C. and Tφnnesen, T. 1996 J. Geophys. Res. 101, 10839.Google Scholar
Reid, G. C. 1997 Geophys. Res. Lett. 24, 1095.Google Scholar
[12]Havnes, O., Torsten, A., Brattli, A. 2001 Phys. Scripta T 89, 133.CrossRefGoogle Scholar
Eidhammer, T. and Havnes, O. 2001 J. Geophys. Res. 106, 24831.CrossRefGoogle Scholar
[13]Smiley, B., Robertson, S., Horányi, M., Blix, T. A., Rapp, M., Latteck, R. and Gumbel, J.J. Geophys. Res. 108 (D8), 8444, doi: 10.1029/2002JD002425.Google Scholar
[14]Smiley, B., Rapp, M., Blix, T. A., Robertson, S., Horányi, M., Latteck, R. and Fiedler, J. 2006 J. Atmos. Solar Terr. Phys. 68, 114.Google Scholar
[15]Lynch, K. A., Gelinas, L. J., Kelloy, M. C., Collins, R. L., Widholm, M., Rau, D., McDonald, E. Donald, E., Liu, Y., Ulwick, J. and Mace, P. 2005 J. Geophys. Res. 110, A03302, doi: 10.1029/2004JA010502.Google Scholar
[16]Shukla, P. K. and Rosenberg, M. 2006 Phys. Scr. 73, 196.CrossRefGoogle Scholar
[17]Barabash, S. and Lundin, R. 1994 IEEE Trans. Plasma Sci. 22, 173.Google Scholar