Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T17:32:08.695Z Has data issue: false hasContentIssue false

Generation of large-scale vorticity in rotating stratified turbulence with inhomogeneous helicity: mean-field theory

Published online by Cambridge University Press:  10 May 2018

N. Kleeorin
Affiliation:
Department of Mechanical Engineering, Ben-Gurion University of the Negev, P. O. Box 653, 84105 Beer-Sheva, Israel Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, 10691 Stockholm, Sweden
I. Rogachevskii*
Affiliation:
Department of Mechanical Engineering, Ben-Gurion University of the Negev, P. O. Box 653, 84105 Beer-Sheva, Israel Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, 10691 Stockholm, Sweden
*
Email address for correspondence: [email protected]

Abstract

We discuss a mean-field theory of the generation of large-scale vorticity in a rotating density stratified developed turbulence with inhomogeneous kinetic helicity. We show that the large-scale non-uniform flow is produced due to either a combined action of a density stratified rotating turbulence and uniform kinetic helicity or a combined effect of a rotating incompressible turbulence and inhomogeneous kinetic helicity. These effects result in the formation of a large-scale shear, and in turn its interaction with the small-scale turbulence causes an excitation of the large-scale instability (known as a vorticity dynamo) due to a combined effect of the large-scale shear and Reynolds stress-induced generation of the mean vorticity. The latter is due to the effect of large-scale shear on the Reynolds stress. A fast rotation suppresses this large-scale instability.

Type
Research Article
Copyright
© Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batchelor, G. K. 1950 On the spontaneous magnetic field in a conducting liquid in turbulent motion. Proc. R. Soc. Lond. A 201 (1066), 405416.Google Scholar
Batchelor, G. K. 1953 The Theory of Homogeneous Turbulence. Cambridge University Press.Google Scholar
Brandenburg, A., Gressel, O., Käpylä, P. J., Kleeorin, N., Mantere, M. J. & Rogachevskii, I. 2012a New scaling for the alpha effect in slowly rotating turbulence. Astrophys. J. 762 (2), 127.CrossRefGoogle Scholar
Brandenburg, A. & Rekowski, B. 2001 Astrophysical significance of the anisotropic kinetic alpha effect. Astron. Astrophys. 379 (3), 11531160.CrossRefGoogle Scholar
Brandenburg, A. & Subramanian, K. 2005 Astrophysical magnetic fields and nonlinear dynamo theory. Phys. Rep. 417 (1), 1209.CrossRefGoogle Scholar
Chan, K. L. 2007 Rotating convection in f-boxes: faster rotation. Astron. Nachr. 328 (10), 10591061.CrossRefGoogle Scholar
Chkhetiany, O. G., Moiseev, S. S., Petrosyan, A. S. & Sagdeev, R. Z. 1994 The large scale stability and self-organization in homogeneous turbulent shear flow. Phys. Scr. 49 (2), 214.CrossRefGoogle Scholar
Chorin, A. J. 1994 Vorticity and Turbulence. Springer.CrossRefGoogle Scholar
Elperin, T., Golubev, I., Kleeorin, N. & Rogachevskii, I. 2007 Large-scale instability in a sheared nonhelical turbulence: formation of vortical structures. Phys. Rev. E 76 (6), 066310.Google Scholar
Elperin, T., Kleeorin, N. & Rogachevskii, I. 1995 Dynamics of the passive scalar in compressible turbulent flow: large-scale patterns and small-scale fluctuations. Phys. Rev. E 52 (3), 26172634.Google ScholarPubMed
Elperin, T., Kleeorin, N. & Rogachevskii, I. 2003 Generation of large-scale vorticity in a homogeneous turbulence with a mean velocity shear. Phys. Rev. E 68 (1), 016311.Google Scholar
Elperin, T., Kleeorin, N. & Rogachevskii, I. 2017 Three-dimensional slow rossby waves in rotating spherical density stratified convection. Phys. Rev. E 96 (3), 033106.Google ScholarPubMed
Elperin, T., Kleeorin, N., Rogachevskii, I. & Zilitinkevich, S. 2002 Formation of large-scale semiorganized structures in turbulent convection. Phys. Rev. E 66 (6), 066305.Google ScholarPubMed
Favier, B., Silvers, L. J. & Proctor, M. R. E. 2014 Inverse cascade and symmetry breaking in rapidly rotating boussinesq convection. Phys. Fluids 26 (9), 096605.CrossRefGoogle Scholar
Frisch, U., Scholl, H., She, Zh. S. & Sulem, P. L. 1988 A new large-scale instability in three-dimensional incompressible flows lacking parity-invariance. Fluid Dyn. Res. 3 (1–4), 295298.CrossRefGoogle Scholar
Frisch, U., She, Zh. S. & Sulem, P. L. 1987 Large-scale flow driven by the anisotropic kinetic alpha effect. Physica D 28 (3), 382392.Google Scholar
Guervilly, C., Hughes, D. W. & Jones, C. A 2014 Large-scale vortices in rapidly rotating Rayleigh–Bénard convection. J. Fluid Mech. 758, 407435.CrossRefGoogle Scholar
Guervilly, C., Hughes, D. W. & Jones, C. A. 2015 Generation of magnetic fields by large-scale vortices in rotating convection. Phys. Rev. E 91 (4), 041001.Google ScholarPubMed
Käpylä, P. J., Brandenburg, A., Kleeorin, N., Mantere, M. J. & Rogachevskii, I. 2012 Negative effective magnetic pressure in turbulent convection. Mon. Not. R. Astron. Soc. 422 (3), 24652473.CrossRefGoogle Scholar
Käpylä, P. J., Mantere, M. J. & Hackman, T. 2011 Starspots due to large-scale vortices in rotating turbulent convection. Astrophys. J. 742 (1), 34.CrossRefGoogle Scholar
Käpylä, P. J., Mitra, Dh. & Brandenburg, A. 2009 Numerical study of large-scale vorticity generation in shear-flow turbulence. Phys. Rev. E 79 (1), 016302.Google ScholarPubMed
Khomenko, G. A., Moiseev, S. S. & Tur, A. V. 1991 The hydrodynamical alpha-effect in a compressible medium. J. Fluid Mech. 225, 355369.CrossRefGoogle Scholar
Kitchatinov, L. L., Rüdiger, G. & Khomenko, G. 1994 Large-scale vortices in rotating stratified disks. Astron. Astrophys. 287, 320324.Google Scholar
Kleeorin, N., Rogachevskii, I. & Ruzmaikin, A. 1990 Magnetic force reversal and instability in a plasma with advanced magnetohydrodynamic turbulence. Sov. Phys. JETP 70, 878883.Google Scholar
Korpi, M. J., Brandenburg, A., Shukurov, A., Tuominen, I. & Nordlund, Å. 1999 A supernova-regulated interstellar medium: simulations of the turbulent multiphase medium. Astrophys. J. Lett. 514 (2), L99.CrossRefGoogle Scholar
Krause, F. & Rädler, K.-H. 1980 Mean-Field Magnetohydrodynamics and Dynamo Theory. Pergamon.Google Scholar
Lugt, H. J. 1983 Vortex Flow in Nature and Technology. Wiley-Interscience.Google Scholar
Mantere, M. J., Käpylä, P. J. & Hackman, T. 2011 Dependence of the large-scale vortex instability on latitude, stratification, and domain size. Astron. Nachr. 332 (9–10), 876882.CrossRefGoogle Scholar
McComb, W. D. 1990 The Physics of Fluid Turbulence. Clarendon.CrossRefGoogle Scholar
Moffatt, H. K. 1978 Field Generation in Electrically Conducting Fluids. Cambridge University Press.Google Scholar
Moiseev, S. S., Sagdeev, R. Z., Tur, A. V., Khomenko, G. A. & Shukurov, A. M. 1983 Physical mechanism of amplification of vortex disturbances in the atmosphere. Sov. Phys. Dokl. 28, 926.Google Scholar
Monin, A. S. & Yaglom, A. M. 2013 Statistical Fluid Mechanics. Courier Corporation.Google Scholar
Orszag, S. A. 1970 Analytical theories of turbulence. J. Fluid Mech. 41 (2), 363386.CrossRefGoogle Scholar
Parker, E. N. 1979 Cosmical Magnetic Fields: Their Origin and their Activity. Oxford University Press.Google Scholar
Pedlosky, J. 1987 Geophysical Fluid Dynamics. Springer.CrossRefGoogle Scholar
Pouquet, A., Frisch, U. & Léorat, J. 1976 Strong mhd helical turbulence and the nonlinear dynamo effect. J. Fluid Mech. 77 (2), 321354.CrossRefGoogle Scholar
Rädler, K.-H., Kleeorin, N. & Rogachevskii, I. 2003 The mean electromotive force for MHD turbulence: the case of a weak mean magnetic field and slow rotation. Geophys. Astrophys. Fluid Dyn. 97 (3), 249274.CrossRefGoogle Scholar
Roberts, P. H. & Soward, A. M. 1975 A unified approach to mean field electrodynamics. Astron. Nachr. 296 (2), 4964.CrossRefGoogle Scholar
Rogachevskii, I. & Kleeorin, N. 2004 Nonlinear theory of a ‘shear–current’ effect and mean-field magnetic dynamos. Phys. Rev. E 70 (4), 046310.Google ScholarPubMed
Rogachevskii, I. & Kleeorin, N. 2007 Magnetic fluctuations and formation of large-scale inhomogeneous magnetic structures in a turbulent convection. Phys. Rev. E 76 (5), 056307.Google Scholar
Rogachevskii, I., Kleeorin, N., Brandenburg, A. & Eichler, D. 2012 Cosmic-ray current-driven turbulence and mean-field dynamo effect. Astrophys. J. 753 (1), 6.CrossRefGoogle Scholar
Rogachevskii, I., Kleeorin, N., Käpylä, P. J. & Brandenburg, A. 2011 Pumping velocity in homogeneous helical turbulence with shear. Phys. Rev. E 84 (5), 056314.Google ScholarPubMed
Rubio, A. M., Julien, K., Knobloch, E. & Weiss, J. B. 2014 Upscale energy transfer in three-dimensional rapidly rotating turbulent convection. Phys. Rev. Lett. 112 (14), 144501.CrossRefGoogle ScholarPubMed
Rüdiger, G., Kitchatinov, L. L. & Hollerbach, R. 2013 Magnetic Processes in Astrophysics: Theory, Simulations, Experiments. Wiley-VCH.CrossRefGoogle Scholar
Ruzmaikin, A., Shukurov, A. & Sokoloff, D. 1988 Magnetic Fields of Galaxies. Kluwer.CrossRefGoogle Scholar
Ruzmaikin, A., Sokoloff, D. & Shukurov, A. 1989 The dynamo origin of magnetic fields in galaxy clusters. Mon. Not. R. Astron. Soc. 241 (1), 114.CrossRefGoogle Scholar
Yokoi, N. & Brandenburg, A. 2016 Large-scale flow generation by inhomogeneous helicity. Phys. Rev. E 93 (3), 033125.Google ScholarPubMed
Yokoi, N. & Yoshizawa, A. 1993 Statistical analysis of the effects of helicity in inhomogeneous turbulence. Phys. Fluids 5 (2), 464477.CrossRefGoogle Scholar
Yousef, T. A., Heinemann, T., Schekochihin, A. A., Kleeorin, N., Rogachevskii, I., Iskakov, A. B., Cowley, S. C. & McWilliams, J. C. 2008 Generation of magnetic field by combined action of turbulence and shear. Phys. Rev. Lett. 100 (18), 184501.CrossRefGoogle ScholarPubMed
Zeldovich, Ya. B., Ruzmaikin, A. A. & Sokolov, D. D. 1983 Magnetic Fields in Astrophysics. Gordon and Breach Science Publishers.Google Scholar
Zhou, H. & Blackman, E. G. 2017 Some consequences of shear on galactic dynamos with helicity fluxes. Mon. Not. R. Astron. Soc. 469 (2), 14661475.CrossRefGoogle Scholar