Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T13:44:04.606Z Has data issue: false hasContentIssue false

A general theory of self-similar expansion waves in magnetohydrodynamic flows

Published online by Cambridge University Press:  15 February 2002

M. G. G. T. TAYLOR
Affiliation:
Space and Atmospheric Physics, The Blackett Laboratory, Imperial College, London SW7 2BW, UK
P. J. CARGILL
Affiliation:
Space and Atmospheric Physics, The Blackett Laboratory, Imperial College, London SW7 2BW, UK

Abstract

Abstract. The general theory of self-similar magnetohydrodynamic (MHD) expansion waves is presented. Building on the familiar hydrodynamic results, a complete range of possible field–flow and wave-mode orientations are explored. When the magnetic field and flow are parallel, only the fast-mode wave can undergo an expansion to vacuum conditions: the self-similar slow-mode wave has a density that increases monotonically. For fast-mode waves with the field at an arbitrary angle with respect to the flow, the MHD equations have a critical point. There is a unique solution that passes through the critical point that has ½γβ = 1 and Br = 0 there, where γ is the polytropic index, β the local plasma beta and Br the radial component of the magnetic field. The critical point is an umbilical point, where sound and Alfvén speeds are equal, and the transcritical solution undergoes a change from a fast-mode to a slow-mode expansion at the critical point. Slow-mode expansions exist for field-flow orientations where the angle between field and flow lies either between 90° and 180° or between 270° and 360°. There is also an umbilic point in these solutions when the initial plasma beta β0 exceeds a critical value βcrit. When β0 [ges ] βcrit, the solutions require a transition through a critical point. When β0 < βcrit, there is a smooth solution involving an inflection in the density and angular velocity. For other angles between field and flow, all the slow-mode waves are compressive. An analytic solution for the case of a magnetic field everywhere perpendicular to the flow with γ = 2 is presented.

Type
Research Article
Copyright
2001 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)