Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T14:29:47.275Z Has data issue: false hasContentIssue false

Full particle-in-cell simulations of kinetic equilibria and the role of the initial current sheet on steady asymmetric magnetic reconnection

Published online by Cambridge University Press:  27 May 2016

J. Dargent*
Affiliation:
LPP, Ecole Polytechnique, CNRS, UPMC, Université Paris Sud, 91128 Palaiseau, France Institut de Recherche en Astrophysique et Planétologie, 31400 Toulouse, France Centre National de la Recherche Scientifique, Toulouse, France
N. Aunai
Affiliation:
LPP, Ecole Polytechnique, CNRS, UPMC, Université Paris Sud, 91128 Palaiseau, France
G. Belmont
Affiliation:
LPP, Ecole Polytechnique, CNRS, UPMC, Université Paris Sud, 91128 Palaiseau, France
N. Dorville
Affiliation:
LPP, Ecole Polytechnique, CNRS, UPMC, Université Paris Sud, 91128 Palaiseau, France
B. Lavraud
Affiliation:
Institut de Recherche en Astrophysique et Planétologie, 31400 Toulouse, France Centre National de la Recherche Scientifique, Toulouse, France
M. Hesse
Affiliation:
Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
*
Email address for correspondence: [email protected]

Abstract

Tangential current sheets are ubiquitous in space plasmas and yet hard to describe with a kinetic equilibrium. In this paper, we use a semi-analytical model, the BAS model, which provides a steady ion distribution function for a tangential asymmetric current sheet and we prove that an ion kinetic equilibrium produced by this model remains steady in a fully kinetic particle-in-cell simulation even if the electron distribution function does not satisfy the time independent Vlasov equation. We then apply this equilibrium to look at the dependence of magnetic reconnection simulations on their initial conditions. We show that, as the current sheet evolves from a symmetric to an asymmetric upstream plasma, the reconnection rate is impacted and the X line and the electron flow stagnation point separate from one another and start to drift. For the simulated systems, we investigate the overall evolution of the reconnection process via the classical signatures discussed in the literature and searched in the Magnetospheric MultiScale data. We show that they seem robust and do not depend on the specific details of the internal structure of the initial current sheet.

Type
Research Article
Copyright
© Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alpers, W. 1971 On the equilibrium of an exact charge neutral magnetopause. Astrophys. Space Sci. 11, 471474.CrossRefGoogle Scholar
Aunai, N., Belmont, G. & Smets, R. 2011 Energy budgets in collisionless magnetic reconnection: ion heating and bulk acceleration. Phys. Plasmas 18 (12), 122901.Google Scholar
Aunai, N., Belmont, G. & Smets, R. 2013 First demonstration of an asymmetric kinetic equilibrium for a thin current sheet. Phys. Plasmas 20 (11), 110702.Google Scholar
Belmont, G., Aunai, N. & Smets, R. 2012 Kinetic equilibrium for an asymmetric tangential layer. Phys. Plasmas 19 (2), 022108.Google Scholar
Cassak, P. A. & Shay, M. A. 2007 Scaling of asymmetric magnetic reconnection: general theory and collisional simulations. Phys. Plasmas 14 (10), 102114.CrossRefGoogle Scholar
Cassak, P. A. & Shay, M. A. 2009 Structure of the dissipation region in fluid simulations of asymmetric magnetic reconnectiona. Phys. Plasmas 16 (5), 055704.Google Scholar
Channell, P. J. 1976 Exact Vlasov–Maxwell equilibria with sheared magnetic fields. Phys. Fluids 19 (10), 15411545.Google Scholar
Chou, Y.-C. & Hau, L.-N. 2012 A statistical study of magnetopause structures: tangential versus rotational discontinuities. J. Geophys. Res. 117, 8232.Google Scholar
Daughton, W., Scudder, J. & Karimabadi, H. 2006 Fully kinetic simulations of undriven magnetic reconnection with open boundary conditions. Phys. Plasmas 13 (7), 072101.Google Scholar
De Keyser, J., Dunlop, M. W., Owen, C. J., Sonnerup, B. U. Ö., Haaland, S. E., Vaivads, A., Paschmann, G., Lundin, R. & Rezeau, L. 2005 Magnetopause and boundary layer. Space Sci. Rev. 118 (1–4), 231320.Google Scholar
Dorville, N., Belmont, G., Aunai, N., Dargent, J. & Rezeau, L. 2015 Asymmetric kinetic equilibria: generalization of the bas model for rotating magnetic profile and non-zero electric field. Phys. Plasmas 22 (9), 092904.CrossRefGoogle Scholar
Dunlop, M. W. & Balogh, A. 2005 Magnetopause current as seen by cluster. Ann. Geophys. 23, 901907.Google Scholar
Fujimoto, K. & Sydora, R. D. 2008 Whistler waves associated with magnetic reconnection. Geophys. Res. Lett. 35, 19112.Google Scholar
Harris, E. G. 1962 On a plasma sheath separating regions of oppositely directed magnetic field. Il Nuovo Cimento 23 (1), 115121.Google Scholar
Hesse, M., Aunai, N., Sibeck, D. & Birn, J. 2014 On the electron diffusion region in planar, asymmetric, systems. Geophys. Res. Lett. 41, 86738680.Google Scholar
Hesse, M., Neukirch, T., Schindler, K., Kuznetsova, M. & Zenitani, S. 2011 The diffusion region in collisionless magnetic reconnection. Space Sci. Rev. 160, 323.Google Scholar
Hesse, M., Schindler, K., Birn, J. & Kuznetsova, M. 1999 The diffusion region in collisionless magnetic reconnection. Phys. Plasmas 6 (5), 17811795.Google Scholar
Lemaire, J. & Burlaga, L. F. 1976 Diamagnetic boundary layers – a kinetic theory. Astrophys. Space Sci. 45, 303325.Google Scholar
Malakit, K., Shay, M. A., Cassak, P. A. & Bard, C. 2010 Scaling of asymmetric magnetic reconnection: kinetic particle-in-cell simulations. J. Geophys. Res. 115, 10223.Google Scholar
Mottez, F. 2003 Exact nonlinear analytic Vlasov–Maxwell tangential equilibria with arbitrary density and temperature profiles. Phys. Plasmas 10 (6), 25012508.CrossRefGoogle Scholar
Murphy, N. A., Sovinec, C. R. & Cassak, P. A. 2010 Magnetic reconnection with asymmetry in the outflow direction. J. Geophys. Res. 115, A09206.Google Scholar
Priest, E. & Forbes, T.(Eds) 2000 Magnetic Reconnection: MHD Theory and Applications. Cambridge University Press.Google Scholar
Pritchett, P. L. 2008 Collisionless magnetic reconnection in an asymmetric current sheet. J. Geophys. Res. 113, 6210.Google Scholar
Pritchett, P. L. & Mozer, F. S. 2009 The magnetic field reconnection site and dissipation region. Phys. Plasmas 16 (8), 080702.CrossRefGoogle Scholar
Roth, M., de Keyser, J. & Kuznetsova, M. M. 1996 Vlasov theory of the equilibrium structure of tangential discontinuities in space plasmas. Space Sci. Rev. 76, 251317.Google Scholar
Shay, M. A., Drake, J. F. & Swisdak, M. 2007 Two-scale structure of the electron dissipation region during collisionless magnetic reconnection. Phys. Rev. Lett. 99 (15), 155002.Google Scholar
Swisdak, M., Rogers, B. N., Drake, J. F. & Shay, M. A. 2003 Diamagnetic suppression of component magnetic reconnection at the magnetopause. J. Geophys. Res. 108, 1218.Google Scholar