Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-23T11:09:52.209Z Has data issue: false hasContentIssue false

Flow dynamics and magnetic induction in the von-Kármán plasma experiment

Published online by Cambridge University Press:  10 October 2014

N. Plihon*
Affiliation:
Laboratoire de Physique, École Normale Supérieure de Lyon, CNRS & Université de Lyon, 46 allée d'Italie, 69364 Lyon Cedex 07, France
G. Bousselin
Affiliation:
Laboratoire de Physique, École Normale Supérieure de Lyon, CNRS & Université de Lyon, 46 allée d'Italie, 69364 Lyon Cedex 07, France
F. Palermo
Affiliation:
Laboratoire de Physique, École Normale Supérieure de Lyon, CNRS & Université de Lyon, 46 allée d'Italie, 69364 Lyon Cedex 07, France LMFA-CNRS, Université de Lyon, École Centrale de Lyon, 69134 Ecully, France
J. Morales
Affiliation:
LMFA-CNRS, Université de Lyon, École Centrale de Lyon, 69134 Ecully, France
W. J. T. Bos
Affiliation:
LMFA-CNRS, Université de Lyon, École Centrale de Lyon, 69134 Ecully, France
F. Godeferd
Affiliation:
LMFA-CNRS, Université de Lyon, École Centrale de Lyon, 69134 Ecully, France
M. Bourgoin
Affiliation:
Laboratoire de Physique, École Normale Supérieure de Lyon, CNRS & Université de Lyon, 46 allée d'Italie, 69364 Lyon Cedex 07, France
J.-F. Pinton
Affiliation:
Laboratoire de Physique, École Normale Supérieure de Lyon, CNRS & Université de Lyon, 46 allée d'Italie, 69364 Lyon Cedex 07, France
M. Moulin
Affiliation:
Laboratoire de Physique, École Normale Supérieure de Lyon, CNRS & Université de Lyon, 46 allée d'Italie, 69364 Lyon Cedex 07, France
A. Aanesland
Affiliation:
Laboratoire de Physique des Plasmas (CNRS, École Polytechnique, Sorbonne Universités, UPMC Univ Paris 06, Univ Paris-Sud), École Polytechnique, 91128 Palaiseau, France
*
Email address for correspondence: [email protected]

Abstract

The von-Kármán plasma experiment is a novel versatile experimental device designed to explore the dynamics of basic magnetic induction processes and the dynamics of flows driven in weakly magnetized plasmas. A high-density plasma column (1016–1019 particles. m−3) is created by two radio-frequency plasma sources located at each end of a 1 m long linear device. Flows are driven through J × B azimuthal torques created from independently controlled emissive cathodes. The device has been designed such that magnetic induction processes and turbulent plasma dynamics can be studied from a variety of time-averaged axisymmetric flows in a cylinder. MHD simulations implementing volume-penalization support the experimental development to design the most efficient flow-driving schemes and understand the flow dynamics. Preliminary experimental results show that a rotating motion of up to nearly 1 km/s is controlled by the J × B azimuthal torque.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Annaratone, B. M., Escarguel, A., Lefevre, T., Rebont, C., Claire, N. and Doveil, F. 2011 Rotation of a magnetized plasma. Phys. Plasmas 18, 032 108.CrossRefGoogle Scholar
Bieber, T., Bardin, S., de Poucques, L., Brochard, F., Hugon, R., Vasseur, J.-L. and Bougdira, J. 2011 Measurements on argon ion by tunable diode-laser induced fluorescence in a low magnetic field helicon configuration reactor. Plasma Sources Sci. Technol. 20, 015 023.CrossRefGoogle Scholar
Boswell, R. W. 1970 Plasma production using a standing helicon wave. Phys. Lett. A 33, 457458.CrossRefGoogle Scholar
Bourgoin, M., Volk, R., Plihon, N., Augier, P., Odier, P. and Pinton, J.-F. 2006 An experimental Bullard-von Kármán dynamo. New J. Phys. 8, 329.CrossRefGoogle Scholar
Braginskii, S. I. 1965 Transport processes in a plasma. In: Reviews of Plasma Physics, Vol. 1, p. 250.Google Scholar
Charles, C. and Boswell, R. 2004 Current-free double-layer formation in a high-density helicon discharge. Appl. Phys. Lett. 82, 1356.CrossRefGoogle Scholar
Chung, K.-S. 2012 Mach probes. Plasma Sources Sci. Technol. 21, 063 001.CrossRefGoogle Scholar
Collins, C., Clark, M., Cooper, C. M., Flanagan, K., Khalzov, I. V., Nornberg, M. D., Seidlitz, B., Wallace, J. and Forest, C. B. 2014 Taylor-Couette flow of unmagnetized plasma. Phys. Plasmas 21, 042 117.CrossRefGoogle Scholar
Collins, C., Katz, N., Wallace, J., Jara-Almonte, J., Reese, I., Zweibel, E. and Forest, C. B. 2012 Stirring unmagnetized plasma. Phys. Rev. Lett. 108, 115 001.CrossRefGoogle ScholarPubMed
Cooper, C. M. et al. 2014 The madison plasma dynamo experiment: a facility for studying laboratory plasma astrophysics. Phys. Plasmas 21, 013 505.CrossRefGoogle Scholar
de la Torre, A. and Burguete, J. 2007 Slow dynamics in a turbulent von Kármán swirling flow. Phys. Rev. Lett. 99, 054 101.CrossRefGoogle Scholar
Demtröder, W. 1981 Laser Spectroscopy. Springer Series in Chemical Physics.CrossRefGoogle Scholar
Douady, S., Couder, Y. and Brachet, M. E. 1991 Direct observation of the intermittency of intense vorticity filaments in turbulence. Phys. Rev. Lett. 67, 983.CrossRefGoogle ScholarPubMed
Dudin, S. V. and Rafalskyi, D. V. 2009 On the simultaneous extraction of positive ions and electrons from single-grid ICP source. Europhys. Lett. 88, 55 002.CrossRefGoogle Scholar
Dudley, M. L. and James, R. W. 1989 Time-dependent kinematic dynamos with stationary flows. Proc. R. Soc. A - Math. Phys., 425, 407429.Google Scholar
Fredriksen, A., Riccardi, C. and Magni, S. 2006 Effects of Edge Dc Biasing on plasma rotation and transport in a toroidal geometry. Phys. Scr. T122, 1114.CrossRefGoogle Scholar
Gagné, R. R. J. and Cantin, A. 1972 Investigation of an rf plasma with symmetrical and asymmetrical electrostatic probes. J. Appl. Phys. 43, 2639.CrossRefGoogle Scholar
Goldstein, M. L. and Roberts, D. A. 1999 Magnetohydrodynamic turbulence in the solar wind. Phys. Plasmas 6, 4154.CrossRefGoogle Scholar
Hershkowitz, N. 1989 How Langmuir probes work. In: Plasma Diagnostics, Boston: Academic Press.Google Scholar
Katz, N., Collins, C., Wallace, J., Clark, M., Weisberg, D., Jara-Almonte, J., Reese, I., Wahl, C. and Forest, C. 2012 Magnetic bucket for rotating unmagnetized plasma. Rev. Sci. Instrum. 83, 063 502.CrossRefGoogle ScholarPubMed
Klinger, T., Latten, A., Piel, A., Bonhomme, G., Pierre, T. and deWit, T. D. 1997 Route to drift, wave chaos and turbulence in a bounded low-beta plasma experiment. Phys. Rev. Lett. 79, 39133916.CrossRefGoogle Scholar
Lieberman, M. A. and Lichtenberg, A. J. 2005 Principles of Plasma Discharges and Materials Processing, 2nd ed. (USA: Wiley-Interscience).CrossRefGoogle Scholar
Miralles, S., Plihon, N. and Pinton, J.-F. 2014 Saturation of the Bullard-von Kármán dynamo. to be submitted to J. Fluid Mech.Google Scholar
Moffatt, H. K. 1978 Magnetic Field Generation in Electrically Conducting Fluids, Cambridge University Press.Google Scholar
Monchaux, R. et al. 2009 The von Kármán sodium experiment: turbulent dynamical dynamos. Phys. Fluids, 21, 035 108.CrossRefGoogle Scholar
Morales, J. A., Bos, W. J. T., Schneider, K. and Montgomery, D. C. 2012 Intrinsic rotation of toroidally confined magnetohydrodynamics. Phys. Rev. Lett. 109, 175 002.CrossRefGoogle ScholarPubMed
Morales, J. A., Leroy, M., Bos, W. J. T. and Schneider, K. 2014 Simulation of confined magnetohydrodynamic flows with Dirichlet boundary conditions using a pseudo-spectral method with volume penalization. J. Comput. Phys. 274, 6494.CrossRefGoogle Scholar
Oldenbürger, S., Brandt, C., Brochard, F., Lemoine, N. and Bonhomme, G. 2010 Spectroscopic interpretation and velocimetry analysis of fluctuations in a cylindrical plasma recorded by a fast camera. Rev. Sci. Instrum. 81, 063 505.CrossRefGoogle Scholar
Peffley, N. L., Cawthorne, A. B. and Lathrop, D. P. 2000 Toward a self-generating magnetic dynamo: the role of turbulence. Phys. Rev. E 61, 52875294.CrossRefGoogle Scholar
Plihon, N., Chabert, P. and Corr, C. S. 2007 Experimental investigation of double layers in expanding plasmas. Phys. Plasmas 14, 013 506.CrossRefGoogle Scholar
Ponty, Y., Mininni, P. D., Montgomery, D. C., Pinton, J.-F., Politano, H. and Pouquet, A. 2005 Numerical study of dynamo action at low magnetic prandtl numbers. Phys. Rev. Lett. 94, 164 502.CrossRefGoogle ScholarPubMed
Rafalskyi, D., Dudin, S. and Aanesland, A. 2014 Magnetized electrostatic energy analyzers for positive and negative ions. submitted to J. Phys. D: Appl. Phys. Google Scholar
Rahbarnia, K. et al. 2012. Direct observation of the turbulent emf and transport of magnetic field in a liquid sodium experiment. Astrophys. J. 759, 80.CrossRefGoogle Scholar
Ravelet, F., Chiffaudel, A. and Daviaud, F. 2008 Supercritical transition to turbulence in an inertially driven von Kármán closed flow. J. Fluid Mech. 601, 339364.CrossRefGoogle Scholar
Ravelet, F., Marié, L., Chiffaudel, A. and Daviaud, F. 2004 Multistability and memory effect in a highly turbulent flow: experimental evidence for a global bifurcation. Phys. Rev. Lett. 93, 164 501.CrossRefGoogle Scholar
Schaffner, D. A., Carter, T. A, Rossi, G. D., Guice, D. S., Maggs, J. E., Vincena, S. and Friedman, B. 2012 Modification of turbulent transport with continuous variation of flow shear in the large plasma device. Phys. Rev. Lett. 109, 135 002.CrossRefGoogle ScholarPubMed
Sheehan, J. P. and Hershkowitz, N. 2011 Emissive probes. Plasma Sources Sci. Technol. 20 063 001.CrossRefGoogle Scholar
Spence, E., Reuter, K. and Forest, C. B. 2009 A spherical plasma dynamo. Astrophys. J. 700, 470.CrossRefGoogle Scholar
Spence, E. J., Nornberg, M. D., Jacobson, C. M., Kendrick, R. D. and Forest, C. B. 2006 Observation of a turbulence-induced large scale magnetic field. Phys. Rev. Lett. 96, 055 002.CrossRefGoogle ScholarPubMed
Teodorescu, C., Ellis, R. F., Case, A., Clary, R., Hassam, A. B., Lunsford, R. and Messer, S. 2006 New high rotation mode in magnetized rotating plasmas. Plasma Phys. Control Fusion 48, 945954.CrossRefGoogle Scholar
Verhille, G., Plihon, N., Bourgoin, M., Odier, P. and Pinton, J.-F. 2010 Laboratory dynamo experiments. Space Sci. Rev. 152, 543564.CrossRefGoogle Scholar
Wallace, E., Thomas, E., Eadon, A. and Jackson, J. D. 2004 Design and initial operation of the Auburn linear experiment for instability studies: a new plasma experiment for studying shear driven flows. Rev. Sci. Instrum. 75, 5160.CrossRefGoogle Scholar
Weygand, J. M., Matthaeus, W. H., Dasso, S., Kivelson, M. G. and Walker, R. J. 2007 Taylor scale and effective magnetic Reynolds number determination from plasma sheet and solar wind magnetic field fluctuations. J. Geophys. Res. 112, A10 201.Google Scholar
Zandbergen, P. J. and Dijkstra, D. 1987 von Kármán swirling flows. Annu. Rev. Fluid Mech. 19, 465.CrossRefGoogle Scholar
Zhou, S., Heidbrink, W. W., Boehmer, H., McWilliams, R., Carter, T. A., Vincena, S., Friedman, B. and Schaffner, D. 2012 Sheared-flow induced confinement transition in a linear magnetized plasma. Phys. Plasmas 19, 012 116.CrossRefGoogle Scholar