Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-28T21:24:20.709Z Has data issue: false hasContentIssue false

Finite-Larmor-radius effects on anisotropy-driven electromagnetic modes in high-beta plasmas

Published online by Cambridge University Press:  13 March 2009

J. Goedert
Affiliation:
Instituto de Fīsica, Universidade Federal do Rio Grande do Sul, 90000 Porto Alegre, R. S, Brazil
J. P. Mondt
Affiliation:
Instituto de Fīsica, Universidade Federal do Rio Grande do Sul, 90000 Porto Alegre, R. S, Brazil

Abstract

From hybrid-kinetic theory an eigenvalue equation for electromagnetic perturbations with ω ≈ ωci in collisionless theta-pinches with anisotropic ion energy was recently derived. This equation is presently reduced to two ordinary second-order linear differential equations by an expansion in the thermal ion Larmor radius. The leading-order correction terms contain Cherenkov resonances absent in the homogeneous case, which are reached for speeds ≈ υ| β| and wave-numbers typical for unstable modes in the homogeneous case, indicating the importance of Cherenkov resonance on the stability of modes driven by ion energy anisotropy. These equations are supplemented by appropriate boundary conditions for the case when the plasma is surrounded by a cylindrical, perfectly conducting wall. For weak inhomogeneities a local dispersion equation is obtained. The physical mechanism underlying the influence of Cherenkov resonance parallel to the confining magnetic field as a FLR effect on stability behaviour is illustrated.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bretz, N. L. & De Silva, A. W. 1974 Phys. Rev. Lett. 32, 138.CrossRefGoogle Scholar
Commisso, R. J. & Griem, H. R. 1976 Phys. Rev. Lett. 36, 1038.CrossRefGoogle Scholar
Cuperman, S., Gomberoff, L. & Sternlueb, A. 1975 J. Plasma Phys. 13, 259.CrossRefGoogle Scholar
Davidson, R. C. & Fridberg, J. P. 1975 Invited paper presented at the Third Topical Conference on Pulsed High-Beta Plasmas, Abingdon, Oxon, U.KGoogle Scholar
Davidson, R. C. & Hammer, D. A. 1972 Phys. Fluids, 15, 1282.CrossRefGoogle Scholar
Davidson, R. C. & Ogden, J. 1975 Phys. Fluids, 18, 1045.CrossRefGoogle Scholar
D'Ippolito, D. A. & Davidson, R. C. 1975 Phys. Fluids, 18, 1507.CrossRefGoogle Scholar
Freidberg, J. P. 1972 Phys. Fluids, 15, 1102.CrossRefGoogle Scholar
Gomberoff, L. & Cuperman, S. 1977 J. Plasma Phys. 18, 91.CrossRefGoogle Scholar
Hamasaki, S. & Krall, N. A. 1973 Phys. Fluids, 16, 145.CrossRefGoogle Scholar
Liewer, P. C. & Davidson, R. C. 1977 Nucl. Fusion, 17, 85.CrossRefGoogle Scholar
Liewer, P. C. & Krall, N. A. 1973 Phys. Fluids, 16, 1953.CrossRefGoogle Scholar
McKenna, K. F., Kristal, R. & Thomas, K. S. 1974 Phys. Rev. Lett. 32, 409.CrossRefGoogle Scholar
Mondt, J. P. 1977 Ph.D. Thesis, Emdhoven University, Eindhoven, The Netherlands.Google Scholar
Mondt, J. P. & Davidson, R. C. 1979 Submitted for publication.Google Scholar
Ossakow, S., Ott, E. & Haber, I. 1972 Phys. Fluids, 15, 2314.CrossRefGoogle Scholar
Tajima, T., Mima, K. & Dawson, J. M. 1977 Phys. Rev. Lett. 39, 201.CrossRefGoogle Scholar