Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-05T14:06:04.965Z Has data issue: false hasContentIssue false

Finite-frequency surface waves on current sheets

Published online by Cambridge University Press:  13 March 2009

K. P. Wessen
Affiliation:
School of Physics, The University of Sydney, N.S.W. 2006, Australia
N. F. Cramer
Affiliation:
School of Physics, The University of Sydney, N.S.W. 2006, Australia

Abstract

The dispersion relation for low-frequency surface waves at a current sheet between two magnetized plasmas is derived using the cold-plasma dielectric tensor with finite ion-cyclotron frequency. The magnetic field direction is allowed to change discontinuously across the sheet, but the plasma density remains constant. The cyclotron frequency causes a splitting of the dispersion relation into a number of mode branches with frequencies both less than and greater than the ion-cyclotron frequency. The existence of these modes depends in particular upon the degree of magnetic field discontinuity and the direction of wave propagation in the sheet relative to the magnetic field directions. Sometimes two modes can exist for the same direction of propagation. The existence of modes undamped by Alfvén resonance absorption is predicted. Analytical solutions are obtained in the low-frequency and magnetic-field-reversal limits. The solutions are obtained numerically in the general case.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Cramer, N. F. & Donnelly, I. J. 1983 Plasma Phys. 25, 703.CrossRefGoogle Scholar
Cramer, N. F. & Donnelly, I. J. 1991 Spatial Dispersion in Solids and Plasmas (ed. Halevi, P.). Elsevier.Google Scholar
Cross, R. C. & Murphy, A. B. 1986 Plasma Phys. Contr. Fusion, 28, 597.CrossRefGoogle Scholar
Hasegawa, A. & Chen, L. 1974 Phys. Rev. Lett. 32, 454.CrossRefGoogle Scholar
Hollweg, J. V. 1982 J. Geophys. Res. 87, 8065.CrossRefGoogle Scholar
Hopcraft, K. I. & Smith, P. R. 1985 Phys. Lett. 113 A, 75.CrossRefGoogle Scholar
Hopcraft, K. I. & Smith, P. R. 1986 Planet. Space. Sci. 34, 1253.CrossRefGoogle Scholar
Ionson, J. A. 1978 Astrophys. J. 226, 650.CrossRefGoogle Scholar
Musielak, Z. E. & Suess, S. T. 1988 Astrophys. J. 330, 456.CrossRefGoogle Scholar
Musielak, Z. E. & Suess, S. T. 1989 J. Plasma Phys. 42, 75.CrossRefGoogle Scholar
Roberts, B. 1981 Solar Phys. 69, 27.CrossRefGoogle Scholar
Smith, P. R., Hopcraft, K. I. & Murphy, N. 1987 Magnetotail Physics (ed. Lui, A. T. Y.). The Johns Hopkins University Press.Google Scholar
Stix, T. H. 1962 The Theory of Plasma Waves. McGraw-Hill.Google Scholar
Tsurutani, B. T., Richardson, I. G., Thorne, R. M., Butler, W., Smith, E. J., Cowley, S. W. H., Gary, S. P., Akasofu, S.-I. & Zwickl, R. D. 1985 J. Geophys. Res. 90, 259.Google Scholar
Wentzel, D. G. 1979 Astrophys. J. 227, 319.CrossRefGoogle Scholar