Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-28T21:10:15.506Z Has data issue: false hasContentIssue false

Finite-beta and curvature drift effects on drift waves near the plasmapause

Published online by Cambridge University Press:  13 March 2009

S. Migliuolo
Affiliation:
Department of Physics, University of Denver, Denver, Colorado, 80208
V. L. Patel
Affiliation:
Department of Physics, University of Denver, Denver, Colorado, 80208

Abstract

The linear stability of finite-β drift waves, near the plasmapause of the earth, is analysed for the case in which the magnetic field is non-uniform in two dimensions. The coupling of the drift wave to the oscillation of the magnetic field, due to non-zero β, is found to be destabilizing. The spatial structure of the unstable mode is found to be governed by the ‘curvature’ scale length of the equilibrium magnetic field.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Antonsen, T. M. 1978 Phys. Rev. Lett. 41, 33.CrossRefGoogle Scholar
Baugher, C. R., Chappell, C. R., Horwitz, J. L., Shelley, E. G. & Young, D. T. 1980 Geophys. Res. Lett. 7, 657.CrossRefGoogle Scholar
Chance, M. S., Coroniti, F. V. & Kennel, C. F. 1973 J. Geophys. Res. 78, 7521.CrossRefGoogle Scholar
Chappell, C. R., Baugher, C. R. & Horwitz, J. L. 1980 Rev. Geophys. Space Phys. 18, 853.CrossRefGoogle Scholar
Coroniti, F. V. & Kennel, C. F. 1970 J. Geophys. Res. 75, 1863.CrossRefGoogle Scholar
Hasegawa, A. 1971 J. Geophys. Res. 76, 5361.CrossRefGoogle Scholar
Hasegawa, A. 1979 Geophys. Res. Lett. 6, 664.CrossRefGoogle Scholar
Hoffman, R. A., Cahill, L. J., Anderson, R. R., Maynard, N. C., Smith, P. H., Fritz, T. A., Williams, D. J., Konradi, A. & Gurnett, D. 1975 J. Geophys. Res. 80, 4287.CrossRefGoogle Scholar
Kintner, P. M. & Gurnett, D. A. 1978 J. Geophys. Res. 83, 39.CrossRefGoogle Scholar
Kozhevnikov, A. A., Mikhailovskii, A. B. & Pokhotelov, O. A. 1976 Planet. Space Sci. 24, 465.CrossRefGoogle Scholar
Krall, N. A. & Rosenbluth, M. N. 1965 Phys. Fluids, 8, 1488.CrossRefGoogle Scholar
La Quey, R. E. 1973 Phys. Fluids, 16, 550.CrossRefGoogle Scholar
Lee, Y. C. & Chen, L. 1979 Phys. Rev. Lett. 42, 708.CrossRefGoogle Scholar
Lin, C. S. & Parks, G. K. 1978 J. Geophys. Res. 83, 2626.Google Scholar
Liu, C. S. 1970 J. Geophys. Res. 75, 3789.CrossRefGoogle Scholar
Meyerson, B. I. & Sasorov, P. 1978 Geomag. Aeron. 18, 208.Google Scholar
Migliuolo, S. & Patel, V. L. 1981 J. Geophys. Res. 86, 5553.CrossRefGoogle Scholar
Mikhailovskii, A. B. & Rudakov, L. I. 1963 Soviet Phys. JETP, 17, 621.Google Scholar
Moe, T. E., Maynard, N. C. & Heppner, J. P. 1980 J. Geophys. Res. 85, 2099.CrossRefGoogle Scholar
Nishihara, K., Hasegawa, A., MacLennan, C. G. & Lanzerotti, L. J. 1972 Planet. Space Sci. 20, 747.CrossRefGoogle Scholar
Patel, V. L. 1978 Geophys. Res. Lett. 5, 291.CrossRefGoogle Scholar
Pearlstein, L. D. & Berk, H. L. 1969 Phys. Rev. Lett. 23, 220.CrossRefGoogle Scholar
Pilipenko, V. A., Pokhotelov, O. A. & Feygin, F. Z. 1977 Geomag. Aeron. 17, 592.Google Scholar
Pokhotelov, O. A. 1978 Geomag. Aeron. 18, 735.Google Scholar
Ross, D. W. & Mahajan, S. M. 1978 Phys. Rev. Lett. 40, 324.CrossRefGoogle Scholar
Shukla, P. K. & Bujarbarua, S. 1980 J. Geophys. Res. 85, 1773.CrossRefGoogle Scholar
Singer, H. J. & Kivelson, M. G. 1979 J. Geophys. Res. 84, 7213.CrossRefGoogle Scholar
Southwood, D. J., Dungey, J. W. & Etherington, R. J. 1969 Planet. Space Sci. 17, 349.CrossRefGoogle Scholar
Tsang, K. T., Catto, P. J., Whitson, J. C. & Smith, J. 1978 a Phys. Rev. Lett. 40, 327.CrossRefGoogle Scholar
Tsang, K. T., Whitson, J. C., Callen, J. D., Catto, P. J. & Smith, J. 1978 b Phys. Rev. Lett. 41, 557.CrossRefGoogle Scholar