Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T14:20:23.346Z Has data issue: false hasContentIssue false

Filamentation instability associated with dispersive Alfvén wave and solar coronal heating

Published online by Cambridge University Press:  15 April 2011

B. K. DAS
Affiliation:
Centre for Energy Studies, Indian Institute of Technology, Delhi 110016, India ([email protected])
S. KUMAR
Affiliation:
Centre for Energy Studies, Indian Institute of Technology, Delhi 110016, India ([email protected])
R. P. SHARMA
Affiliation:
Centre for Energy Studies, Indian Institute of Technology, Delhi 110016, India ([email protected])

Abstract

This paper presents the nonlinear dynamics of the dispersive Alfvén wave (DAW) in the low-β plasmas (β≪me/mi; known as inertial Alfvén waves) applicable to solar corona. The pump DAW is perturbed by a low-frequency slow Alfvén wave (SW). When the ponderomotive nonlinearities are incorporated in the DAW and SW dynamics, the model equations of DAW and SW turn out to be the modified Zakharov system of equations (MZSE) Growth rate and threshold field for modulational (filamentation) instability have been calculated. The dependence of the growth rate on the perturbation wave number and the pump wave parameters such as k0xλe (inertial) has also been presented. It is obvious from this investigation that DAW can become unstable when it nonlinearly interacts with the SW and modulational instabilities can be triggered. The relevance of these investigations for solar corona has been discussed.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Wu, D. J. and Yang, L. 2006 Astron. Astrophys. 452, L7L10.CrossRefGoogle Scholar
[2]Shukla, A. and Sharma, R. P. 2001 Phys. Plasmas 8, 3759.CrossRefGoogle Scholar
[3]Shukla, A., Sharma, R. P. and Malik, M. 2004 Phys. Plasmas 7, 2738.CrossRefGoogle Scholar
[4]Voitenko, Y., Goossens, M., Sirenko, O. and Chian, A. C. L. 2003 Astron. Astrophys. 409, 331.CrossRefGoogle Scholar
[5]Voitenko, Y. and Goossens, M. 2004 Nonl. Proc. Geophys. 11, 535.CrossRefGoogle Scholar
[6]Shukla, P. K. and Stenflo, L. 2005 Phys. Plasmas 12, 084502.CrossRefGoogle Scholar
[7]Shukla, P. K., Bingham, R., Eliasson, B., Dieckmann, M.E. and Stenflo, L., 2006 Plasma Phys. Control Fusion 48, B249B255.CrossRefGoogle Scholar
[8]Shukla, P. K. and Stenflo, L. 2005 Astrophys. J. 629, L93L95.CrossRefGoogle Scholar
[9]Champeaux, S., Passot, T. and Sulem, P. L. 1999 Alfven wave filamentation and plasma heating. In: Proc. Workshop on Nonlinear MHD Waves and Turbulence, Nice, France, 1 December–4 December 1998, (ed. Passot, T., Sulem, P. L.), New York: Springer-Verlag, pp. 5582.Google Scholar
[10]Laveder, D., Passot, T. and Sulem, P. L. 2001 Physica D 152–153, 694704.CrossRefGoogle Scholar
[11]Kruer, W. L. 1988 The Physics of Laser Plasma Interactions. Reading, MA, USA: Addison-Wesley-Longman.Google Scholar
[12]Tsiklauri, D., Sakai, J. I. and Saito, S. 2005 Astron. Astrophys. 435, 1105.CrossRefGoogle Scholar
[13]Passot, T. and Sulem, P. L. 2003 Phys. Plasmas 10, 3914.CrossRefGoogle Scholar
[14]Goldreich, P. and Sridhar, 1995 Astrophys. J. 438.CrossRefGoogle Scholar
[15]Shukla, P. K., Stenflo, L. and Bingham, R. 1999 Phys. Plasmas 6, 1677.CrossRefGoogle Scholar
[16]Sharma, R. P., Singh, H. D. and Malik, M. 2006 J. Geophys. Res. 111, A12108.Google Scholar
[17]Singh, H. D. and Sharma, R. P. 2007 Phys. Plasmas 14, 102304.CrossRefGoogle Scholar
[18]Malik, M., Sharma, R. P. and Singh, H. D. 2007 Sol. Phys. 241, 317.CrossRefGoogle Scholar
[19]Sharma, R. P., Kumar, S. and Singh, H. D. 2009 Phys. Plasmas 16, 032901.CrossRefGoogle Scholar
[20]Marklund, M., Shukla, P. K., Stenflo, L. and Lundin, J. 2006 Phys. Scr. 74, 373376.CrossRefGoogle Scholar
[21]Kumar, S. and Sharma, R. P. 2010 Phys. Plasmas 17, 1.Google Scholar
[22]Bellan, P. M. and Stasiewicz, K. 1998 Phys. Rev. Lett. 80, 3523.CrossRefGoogle Scholar
[23]Shukla, P. K. and Stenflo, L. 1999 Phys. Plasmas 6, 4120.CrossRefGoogle Scholar
[24]Shukla, P. K. and Stenflo, L. 2000 Phys. Plasmas 7, 2738.CrossRefGoogle Scholar
[25]Shukla, A. and Sharma, R. P. 2000 J. Geophys. Res. 107, 1338.Google Scholar
[26]Sharma, R. P., Kumar, S. and Singh, H. D. 2008 Phys. Plasmas 15, 082902.CrossRefGoogle Scholar
[27]Singh, H. D. and Sharma, R. P. 2006 Phys. Plasmas 13, 012902.CrossRefGoogle Scholar
[28]Shukla, A. and Sharma, R. P. 2002 J. Atmos. Sol. Terr. Phys. 64, 661.CrossRefGoogle Scholar
[29]Shen, M. M. and Nicholson, D. R. 1987 Phys. Fluids 30, 1096.CrossRefGoogle Scholar