Article contents
Fast and spectrally accurate evaluation of gyroaverages in non-periodic gyrokinetic-Poisson simulations
Published online by Cambridge University Press: 22 August 2017
Abstract
We present a fast and spectrally accurate numerical scheme for the evaluation of the gyroaveraged electrostatic potential in non-periodic gyrokinetic-Poisson simulations. Our method relies on a reformulation of the gyrokinetic-Poisson system in which the gyroaverage in Poisson’s equation is computed for the compactly supported charge density instead of the non-periodic, non-compactly supported potential itself. We calculate this gyroaverage with a combination of two Fourier transforms and a Hankel transform, which has the near optimal run-time complexity $O(N_{\unicode[STIX]{x1D70C}}(P+\hat{P})\log (P+\hat{P}))$, where $P$ is the number of spatial grid points, $\hat{P}$ the number of grid points in Fourier space and $N_{\unicode[STIX]{x1D70C}}$ the number of grid points in velocity space. We present numerical examples illustrating the performance of our code and demonstrating geometric convergence of the error.
- Type
- Research Article
- Information
- Copyright
- © Cambridge University Press 2017
References
- 2
- Cited by