Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-04T04:33:38.724Z Has data issue: false hasContentIssue false

Experiments on ion-acoustic rarefactive solitons in a multi-component plasma with negative ions

Published online by Cambridge University Press:  13 March 2009

Y. Nakamura
Affiliation:
Institute of Space and Astronautical Science, Komaba, Meguro-ku, Tokyo 153, Japan
J. L. Ferreira
Affiliation:
Instituto de Pesquisas Espaciais, Conselho Nacional de Desenvolvimento Cientifico e Tecnológico, 12200 São José dos Campos, São Paulo, Brazil
G. O. Ludwig
Affiliation:
Instituto de Pesquisas Espaciais, Conselho Nacional de Desenvolvimento Cientifico e Tecnológico, 12200 São José dos Campos, São Paulo, Brazil

Abstract

Ion-acoustic solitons in a three-component plasma which consists of electrons and positive and negative ions have been investigated experimentally. When the concentration of negative ions is smaller than a certain value, positive or compressive solitons are observed. At the critical concentration, a broad pulse of small but finite amplitude propagates without changing its shape. When the concentration is larger than this value, negative or rarefactive solitons are excited. The velocity and the width of these solitons are measured and compared with predictions of the Korteweg-de Vries equation which takes the negative ions and the ion temperature into consideration. Head-on and overtaking collisions of the rarefactive solitons have been observed to show that the solitons are not affected by these collisions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Asundi, R. K. & Craggs, J. D. 1964 Proc. Phys. Soc. 83, 611.CrossRefGoogle Scholar
D'angelo, N., Goeler, S. V. & Ohe, T. 1968 Phys. Fluids, 9, 1605.CrossRefGoogle Scholar
Das, G. C. 1977 Plasma Phys. 19, 363.CrossRefGoogle Scholar
Das, G. C. 1979 Plasma Phys. 21, 257.CrossRefGoogle Scholar
Das, G. C. & Tagare, S. G. 1975 Plasma Phys. 17, 1025.CrossRefGoogle Scholar
Drazin, P. G. 1983 Solitons. Cambridge University Press.CrossRefGoogle Scholar
Ichikawa, Y. H. & Watanabe, S. 1977 J. de Phys. C6–15, 38.Google Scholar
Ikezi, H. 1973 Phys. Fluids, 16, 1663.Google Scholar
Ikezi, H. 1978 Solitons in Action (ed. Lonngren, K. E. and Scott, A.), p. 153. Academic.Google Scholar
Ikezi, H., Taylor, R. J. & Baker, D. R. 1970 Phys. Rev. Lett. 25, 11.CrossRefGoogle Scholar
Karpman, V. I., Lynov, J. P., Michelsen, P., Pecséli, H. L., Rasmussen, J. J. & Trikov, V. A. 1980 Phys. Fluids, 23, 1782.CrossRefGoogle Scholar
Lonngren, K. E. 1983 Plasma Phys. 25, 943.CrossRefGoogle Scholar
Ludwig, G. O., Ferreira, J. L. & Nakamura, Y. 1984 Phys. Rev. Lett. 52, 275.CrossRefGoogle Scholar
Nakamura, Y. 1982 IEEE Trans. Plasma Sci. PS–10, 180.CrossRefGoogle Scholar
Nakamura, Y., Nakamura, M. & Itoh, T. 1976 Phys. Rev. Lett. 37, 209.CrossRefGoogle Scholar
Nakamura, Y., Nomura, Y. & Itoh, T. 1977 Phys. Rev. Lett. 39, 1622.CrossRefGoogle Scholar
Nakamura, Y. & Nomura, Y. 1980 Phys. Lett. 75 A, 351.CrossRefGoogle Scholar
Nakamura, Y. & Tsukabayashi, I. 1984 Phys. Rev. Lett. 52, 2356.CrossRefGoogle Scholar
Okutsu, E. & Nakamura, Y. 1979 Plasma Phys. 21, 1053.CrossRefGoogle Scholar
Pierre, T., Bonhomme, G., Cussenot, J. R. & Leclert, G. 1983 J. Physique, 44, 629.Google Scholar
Tran, M. Q. 1979 Physica Scripta, 20, 317.CrossRefGoogle Scholar
Tran, M. Q. & Coquerand, S. 1976 Phys. Rev. A14, 2301.CrossRefGoogle Scholar
Watanabe, S. 1975 J. Plasma Phys. 14, 353.CrossRefGoogle Scholar
Wong, A. Y., Mamas, D. L. & Arnush, D. 1975 Phys. Fluids, 18, 1489.CrossRefGoogle Scholar