Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-26T00:45:10.475Z Has data issue: false hasContentIssue false

Expansion of a quantum electron gas

Published online by Cambridge University Press:  13 March 2009

S. Mola
Affiliation:
PMMS/CNRS, 3A Avenue de la Recherche Scientifique, 45071 Orleans Cedex 2, France
G. Manfredi
Affiliation:
PMMS/CNRS, 3A Avenue de la Recherche Scientifique, 45071 Orleans Cedex 2, France
M. R. Feix
Affiliation:
PMMS/CNRS, 3A Avenue de la Recherche Scientifique, 45071 Orleans Cedex 2, France

Extract

The expansion of a quantum electron gas (non-relativistic, no spin) is investigated via the one-particle Schrödinger–Poisson model. Classically, the nonlinear term enhances the formation of a very regular asymptotic state. By means of rescaling methods, we conjecture that the quantum asymptotic solution is identical to the classical one. Subsequent numerical simulations confirm the above conjecture and define precisely the way in which the classical limit is approached.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ablowitz, M. J. & Segur, H. 1981 Solitons and the Inverse Scattering Transform. SIAM.CrossRefGoogle Scholar
Arnold, A. & Markovich, P. A. 1991 Applied and Industrial Mathematics (ed. Spigler, R.), p. 301. Kiuwer.CrossRefGoogle Scholar
Arnold, A. & Nier, F. 1992 Math Comp. 58, 645.CrossRefGoogle Scholar
Bertrand, P., Nguyen, V. T., Gros, M., Izrar, B., Felx, M. & Gutierrez, J. 1980 J. Plasma Phys. 23, 401.Google Scholar
Besnard, D., Burgan, J. R., Munier, A., Feix, M. R. & Fijalkow, E. 1983 J.Math. Phys. 24, 1123.CrossRefGoogle Scholar
Bouquet, S. & Feix, M. R. 1982 C. R. Acad. Sci., Paris 295, 993.Google Scholar
Burgan, J. R., Feix, M. R., Fijalkow, E. & Munter, A. 1983 J. Plasma Phys. 29, 139.CrossRefGoogle Scholar
Burgan, J. R., Gutierrez, J., Munter, A., Fijalkow, B. & Feix, M. R. 1978 Strongly Coupled Plasmas (ed. Kalman, G.), p. 597. Plenum.CrossRefGoogle Scholar
Cryz Serra, A. M. & Aren Santos, H. 1991 J. Appl. Phys.. 70, 2734.CrossRefGoogle Scholar
Goldstein, H. 1980 Classical Mechanics, 2nd edn, p. 383. Addison-Wesley.Google Scholar
Kerkhoven, T., Galick, A. T., Ravaioli, U., Arends, J. H. & Saad, Y. 1990 J. Appi. Phys. 68, 3461.CrossRefGoogle Scholar
Manfredi, G., Mola, S. & Feix, M. R. 1993 Phys. Fluids B 5, 388.CrossRefGoogle Scholar
Nguyen, V. T., Bertrand, P., Izrai, B., Fijalkow, E. & Feix, M. R. 1985 Comp. Phys. Commun. 34, 295.CrossRefGoogle Scholar
Suh, N. D., Feix, M. R. & Bertrand, P. 1991 J. Comp. Phys. 94, 403.CrossRefGoogle Scholar
Tatarskii, V. I. 1983 Soviet Phys. Usp. 26, 311.CrossRefGoogle Scholar
Yalabik, M. C., Neofotistos, G., Diff, K., Hong, Guo & Gunton, J. B. 1989 IEEE Trans. Electron Dev. 36, 1009.CrossRefGoogle Scholar
Zrineh, H., Feix, M. R., Fijalkow, E. & Navet, M. 1987 Trans. Theory and Stat. Phys. 16, 279.Google Scholar