Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T00:34:01.746Z Has data issue: false hasContentIssue false

Excitation of upper-hybrid waves by a thermal parametric instability

Published online by Cambridge University Press:  13 March 2009

M. C. Lee
Affiliation:
Regis College Research Center, Weston, Massachusetts 02193
S. P. Kuo
Affiliation:
Polytechnic Institute of New York, Long Island Center, Farmingdale, New York 11735

Abstract

A purely growing instability characterized by a four-wave interaction has been analysed in a uniform, magnetized plasma. Up-shifted and down-shifted upper-hybrid waves and a non-oscillatory mode can be excited by a pump wave of ordinary rather than extraordinary polarization in the case of ionospheric heating. The differential Ohmic heating force dominates over the ponderomotive force as the wave–wave coupling mechanism. The beating current at zero frequency produces a significant stabilizing effect on the excitation of short-scale modes by counterbalancing the destabilizing effect of the differential Ohmic heating. The effect of ionospheric inhomogeneity is estimated, showing a tendency to raise the thresholds of the instability. When applied to ionospheric heating experiments, the present theory can explain the excitation of field-aligned plasma lines and ionospheric irregularities with a continuous spectrum ranging from metre-scale to hundreds of metre-scale. Further, the proposed mechanism may become a competitive process to the parametric decay instability and be responsible for the overshoot phenomena of the plasma line enhancement at Arecibo.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Carpenter, G. B. 1974 Radio Sci. 9, 965.CrossRefGoogle Scholar
Das, A. C. & Fejer, J. A. 1979 J. Geophys. Res. 84, 6701.CrossRefGoogle Scholar
Dysthe, K. B., Mjølhus, E., Pecseli, H. L. & Rypdal, K. 1983 Phys. Fluids, 26, 146.CrossRefGoogle Scholar
Fejer, J. A. 1979 Rev. Geophys. Space Phys. 17, 135.CrossRefGoogle Scholar
Fejer, J. A. & Kuo, Y. Y. 1973 AGARD Conf. Proc. 138, 11.Google Scholar
Grach, S. M., Karashtin, A. N., Mityakov, N. A., Rapoport, V. O. & Trakhtengerts, V. Yu. 1977 Radiophys. Quantum Electron. 20, 1254.CrossRefGoogle Scholar
Gurevich, A. V. 1978 Nonlinear Phenomena in the Ionosphere (Physics and Chemistry in Space 10). Springer.CrossRefGoogle Scholar
Minkoff, J. 1974 Radio Sci. 9, 997.CrossRefGoogle Scholar
Minkoff, J. & Kreppel, R. 1976 J. Geophys. Res. 81, 2844.CrossRefGoogle Scholar
Minkoff, J., Kugelman, P. & Weissman, I. 1974 Radio Sci. 9, 941.CrossRefGoogle Scholar
Nishikawa, K. 1968 J. Phys. Soc. (Japan), 24, 916.CrossRefGoogle Scholar
Perkins, F. W., Oberman, C. & Valeo, E. J. 1974 J. Geophys. Res. 79, 1478.CrossRefGoogle Scholar
Porkolab, M. & Goldman, M. V. 1976 Phys. Fluids, 19, 872.CrossRefGoogle Scholar
Rao, P. B. & Thome, G. D. 1974 Radio Sci. 9, 987.CrossRefGoogle Scholar
Showen, R. L. & Kim, D. M. 1978 J. Geophys. Res. 83, 623.CrossRefGoogle Scholar
Stubbe, P., Kopka, H., Jones, T. B. & Robinson, T. 1982 J. Geophys. Res. 87, 1551.CrossRefGoogle Scholar
Vaskov, V. V. & Gurevich, A. V. 1977 Soviet Phys. JETP, 46, 487.Google Scholar