Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T14:12:56.931Z Has data issue: false hasContentIssue false

Exact solution to neutrino-plasma two-flavor dynamics

Published online by Cambridge University Press:  09 August 2013

FERNANDO HAAS
Affiliation:
Departamento de Física, Universidade Federal do Paraná, Curitiba, PR, 81531-990, Brazil ([email protected])
JOSÉ T. MENDONÇA
Affiliation:
IPFN, Instituto Superior Técnico, 1049-001 Lisboa, Portugal

Abstract

It is shown that the two-flavor neutrino oscillation equations admit an exact analytic solution for arbitrarily chosen normalized electron neutrino population, provided the electron plasma density is adjusted in a certain way. The associated formula for the electron plasma density is applied to the cases of exponentially decaying or oscillating electron neutrino populations.

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benatti, F. and Floreanini, R., 2005 Dissipative neutrino oscillations in randomly fluctuating matter. Phys. Rev. D 71, 013003.CrossRefGoogle Scholar
Bernstein, I. B., Greene, J. M. and Kruskal, M. D., 1957 Exact nonlinear plasma oscillations. Phys. Rev. 1087, 546550.CrossRefGoogle Scholar
Bingham, R., Silva, L. O., Mendonça, J. T., Shukla, P. K., Mori, W. B. and Serbeto, A., 2004 Neutrino plasma coupling in dense astrophysical plasmas. Plasma Phys. Control. Fusion 46, B327B334.CrossRefGoogle Scholar
Hollenberg, S. and Päs, H., 2012 Adiabatic and nonadiabatic perturbation theory for coherence vector description of neutrino oscillations. Phys. Rev. D 85, 013013.CrossRefGoogle Scholar
Kneller, J. P., McLaughlin, G. C. and Patton, K. M., 2013 Stimulated neutrino transformation with sinusoidal density profiles. J. Phys. G.: Nucl. Part. Phys. 40, 055002.CrossRefGoogle Scholar
Koike, M., Ota, T., Saito, M. and Satoa, J., 2009 Fourier analysis of the parametric resonance in neutrino oscillations. Phys. Lett. B 675, 6972.CrossRefGoogle Scholar
Krastev, P. I. and Smirnov, A. Y., 1989 Parametric effects in neutrino oscillations. Phys. Lett. B 226, 341346.CrossRefGoogle Scholar
Petkov, S. T., 1988 Exact analytic description of two-neutrino oscillations in matter with exponentially varying density. Phys. Lett. B 200, 373379.CrossRefGoogle Scholar
Petkov, S. T., 1997 Describing analytically the matter-enhanced two-neutrino transitions in a medium. Phys. Lett. B 406, 355365.CrossRefGoogle Scholar
Raffelt, G. G. 1996 Stars as Laboratories for Fundamental Physics. University of Chicago Press.Google Scholar
Schafer, A. and Koonin, S. E., 1987 Influence of density fluctuations on solar neutrino conversion. Phys. Lett. B 185, 417420.CrossRefGoogle Scholar
Serbeto, A., Rios, L. A., Mendonça, J. T. and Shukla, P. K., 2004 Neutrino (antineutrino) effective charge in a magnetized electron-positron plasma. Phys. Plasmas 11, 13521357.CrossRefGoogle Scholar
Shukla, P. K., 2011 Amplification of neutrino oscillations by a density ripple in dense plasmas. J. Plasma Phys. 77, 289291.CrossRefGoogle Scholar
Shukla, P. K., Bingham, R., Mendonça, J. T. and Stenflo, L., 1998 Neutrinos generating inhomogeneities and magnetic fields in the early universe. Phys. Plasmas 5, 28152817.CrossRefGoogle Scholar
Silva, L. O., Bingham, R., Dawson, J. M., Mendonça, J. T. and Shukla, P. K., 1999 Neutrino driven streaming instabilities in a dense plasma. Phys. Rev. Lett. 83, 27032706.CrossRefGoogle Scholar
Torrente-Lujan, E., 1999 Finite dimensional systems with random external fields and neutrino propagation in fluctuating media. Phys. Rev. D 59, 073001.CrossRefGoogle Scholar