Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T02:01:45.588Z Has data issue: false hasContentIssue false

Exact algebraic dispersion relations for wave propagation in hot magnetized plasmas

Published online by Cambridge University Press:  13 March 2009

Horst Fichtner
Affiliation:
Institut für Astrophysik und Extraterrestrische Forschung der Universität Bonn, Auf dem Hügel 71, W-5300 Bonn, Germany
S. Ranga Sreenivasan
Affiliation:
Department of Physics and Astronomy, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, Canada T2N 1N4

Abstract

A new model is presented for the treatment of wave propagation along an external magnetic field in a hot collisionless plasma. The analysis is based on the so-called polynomial distribution functions along the magnetic field, and takes account of enhanced fractions of high-energy particles, which are characteristic of rarefied and magnetized astrophysical plasmas, in comparison with the bi-Maxwellian distributions. These new distributions permit the derivation of general dispersion relations that are exactly valid for waves with Im (ω) > 0, and represent good approximations for those with Im (ω) > 0. Furthermore, the explicit form of the dispersion relations is shown to be valid for distribution functions of different shapes. Because of their algebraic structure, the solution of the dispersion relations can be shown to be equivalent to the determination of the roots of complex-valued polynomials. The cold plasma, the Maxwellian plasma and the so-called quasi-Maxwellian plasma appear in this formalism as asymptotic and special cases. The reliability of the model is demonstrated with the calculation of dispersion curves, growth and damping rates for several standard modes, and by comparing it with previous calculations carried out using explicit Maxwellian distributions. Finally, the tendency of the solar wind to generate ion-cyclotron waves is investigated as a first, new application.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham-Shrauner, B. & Feldman, W.C. 1977 J. Plasma Phys. 17, 123.CrossRefGoogle Scholar
Achatz, U. 1992 Ph.D. thesis, Universität Bonn.Google Scholar
Achterberg, A. 1981 Astron. Astrophys. 98, 161.Google Scholar
André, M. 1985 J. Plasma Phys. 33, 1.CrossRefGoogle Scholar
Appleton, E. V. 1927 URSI Proceedings, Washington Assembly, Brussels.Google Scholar
Appleton, E. V. 1932 J. Inst. Elect. Engrs 71, 642.Google Scholar
Bekefi, G. 1966 Radiation Processes in Plasmas. Wiley.Google Scholar
Chew, C. F., Goldberger, M. L. & Low, F. E. 1956 Proc. R. Soc. Land. A 236, 112.Google Scholar
Davidson, R. C. 1983 Handbook of Plasma Physics (ed. Galeev, A. & Sudan, R. N.), p. 519. North-Holland.Google Scholar
Davidson, R. C. & Ogden, J. M. 1975 Phys. Fluids. 18, 1045.CrossRefGoogle Scholar
Davila, J. M. & Scott, J. S. 1984 Astrophys. J.. 280, 334.CrossRefGoogle Scholar
Fahr, H. J. & Ziemkiewicz, J. 1988 Astron. Astrophys. 202, 295.Google Scholar
Fichtner, H. 1991 Ph.D. thesis, Universität Bonn.Google Scholar
Fichtner, H. 1992 Proceedings of the 18th International Symposium of Rarefied Gasdynamics (ROD 18), 1992, University of British Columbia, Vancouver (in press).Google Scholar
Fichtner, H. & Fahr, H. J. 1991 Astron. Astrophys. 241, 187.Google Scholar
Fichtner, H. & Fahr, H. J. 1992 Proceedings of the Solar Wind VII Conference, Costar, vol. 37.Google Scholar
Foote, E. A. & Kulsrud, R. M. 1979 Astrophys. J.. 233, 302.CrossRefGoogle Scholar
Fried, B. D. & Conte, S. D. 1961 The Plasma Dispersion Function. Academic.Google Scholar
Galeev, A. & Sudan, R. N. (eds.) 1983 Handbook of Plasma Physics. North-Holland.Google Scholar
Gary, S. P. & Feldman, W. C. 1978 Phys. Fluids. 21, 72.CrossRefGoogle Scholar
Gary, S. P., Montgomery, M. D., Feldman, W. C. & Forslund, D. W. 1976 J. Geophys. Res. 81, 1241.CrossRefGoogle Scholar
Holman, G. D., Ionson, J. A. & Scott, J. S. 1979 Astrophys. J.. 228, 576.CrossRefGoogle Scholar
Hollweg, J. V. & Völk, H. J. 1970 J. Geophys. Res. 75, 5297.CrossRefGoogle Scholar
Jenkins, M. A. & Traub, J. F. 1968 Numer. Math.. 14, 252.CrossRefGoogle Scholar
Kennel, C. F. & Scarf, F. L. 1968 J. Geophys. Res. 73, 6149.CrossRefGoogle Scholar
Krall, N. A. & Trivelpiece, A. W. 1973 Principles of Plasma Physics. McGraw-Hill. (Republished 1986 San Francisco Press.)CrossRefGoogle Scholar
Marsch, E. 1984 Plasma Astrophysics. ESA-SP-207, 33.Google Scholar
Marsch, E., Goertz, C. K. & Richter, A. K. 1982 J. Geophys. Res. 87, 5030.CrossRefGoogle Scholar
Montgomery, M. D. & Tidman, D. A. 1964 Plasma Kinetic Theory. McGraw-Hill.Google Scholar
Oakes, M. E., Michie, R. B., Tsui, K. H. & Copeland, J. E. 1979 J. Plasma Phys. 21, 205.CrossRefGoogle Scholar
Olbert, S. 1969 Physics of the Magnetosphere (ed. Carovillano, R. L., McClay, J. F. & Radoski, H. R.), p. 641. Reidel.Google Scholar
Olbert, S., Egidi, A., Moreno, G. & Pat, L. 1967 Trans. AGU. 48, 177.Google Scholar
Owocki, S. P. & Scudder, J. D. 1983 Astrophys. J.. 270, 758.CrossRefGoogle Scholar
Robinson, P. A. & Newman, D. L. 1988 J. Plasma Phys. 40, 553.CrossRefGoogle Scholar
Rönnmark, K. 1982 KGI Report, Kiruna no. 179.Google Scholar
Rönnmark, K. 1983 Plasma Phys. 25, 699.Google Scholar
Schlickeiser, R. & Lesch, H. 1988 Astrophys. J.. 329, 149.CrossRefGoogle Scholar
Schwartz, S. J. 1980 Rev. Geophys. Space Sci. 18, 313.CrossRefGoogle Scholar
Scudder, J. P. & Olbert, S. 1979a J. Geophys. Res. 84, 2755.CrossRefGoogle Scholar
Scudder, J. D. & Olbert, S. 1979b J. Geophys. Res. 84, 6603.CrossRefGoogle Scholar
Stix, T. H. 1962 The Theory of Plasma Waves. McGraw-Hill.Google Scholar
Stringer, T. E. 1963 Plasma Phys. 5, 89.Google Scholar
Summers, P. & Thorne, R. M. 1991 Phys. Fluids. B 3, 1835.CrossRefGoogle Scholar
Swanson, D. G. 1989 Plasma Waves. Academic.CrossRefGoogle Scholar
Thorne, R. M. & Summers, D. 1986 Phys. Fluids. 29, 4091.CrossRefGoogle Scholar
Thorne, R. M. & Summers, D. 1991 Phys. Fluids. B 3, 2117.CrossRefGoogle Scholar
Watson, G. N. 1958 A Treatise on the Theory of Bessel Functions, 2nd edn. Cambridge University Press.Google Scholar
Wu, C. S. & Davidson, R. C. 1972 J. Geophys. Res. 77, 5399.CrossRefGoogle Scholar