Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T13:20:53.582Z Has data issue: false hasContentIssue false

Evolution of the bump-on-tail instability in compressing plasma

Published online by Cambridge University Press:  03 February 2011

P. F. SCHMIT
Affiliation:
Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543, USA
C. R. MOONEY
Affiliation:
Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543, USA
I. Y. DODIN
Affiliation:
Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA
N. J. FISCH
Affiliation:
Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543, USA

Abstract

Through particle-in-cell simulations, the evolution of the bump-on-tail instability (BoTI) is studied for plasma subject to one-dimensional mechanical compression. It is shown that the final state of BoTI differs from that described by quasilinear theory for stationary bulk plasma and can depend on the compression history. The transformation of thermal energy into wave energy increases the plasma compressibility, thereby decreasing the amount of mechanical work required to compress the plasma to a specified size. Also, the energy spectrum of the excited modes can be tailored by choosing a particular compression scenario, offering a new technique for manipulating plasmas mechanically.

Type
Papers
Creative Commons
This is a work of the U.S. Government and is not subject to copyright protection in the United States.
Copyright
Copyright © Cambridge University Press 2011. This is a work of the U.S. Government and is not subject to copyright protection in the United States.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Moses, E. I. 2009 Nucl. Fusion 49, 104022.CrossRefGoogle Scholar
[2]Kirkpatrick, R. C., Lindemuth, I. R. and Ward, M. S. 1995 Fusion Tech. 27, 201.CrossRefGoogle Scholar
[3]Ryutov, D. D., Derzon, M. S. and Matzen, M. K. 2000 Rev. Mod. Phys. 72, 167.CrossRefGoogle Scholar
[4]Dodin, I. Y., Geyko, V. I. and Fisch, N. J. 2009 Phys. Plasmas 16, 112101; see also refs. therein.CrossRefGoogle Scholar
[5]Schmit, P. F., Dodin, I. Y. and Fisch, N. J. 2010 Phys. Rev. Lett. 105, 175003.CrossRefGoogle Scholar
[6]Krall, N. A. and Trivelpiece, A. W. 1973 Principles of Plasma Physics, Chap 10. Columbus, OH: McGraw-Hill.CrossRefGoogle Scholar
[7]Stix, T. H. 1992 Waves in Plasmas, Chap. 8 and Secs. 7.7, 7.8. New York, NY: AIP.Google Scholar
[8]Tokatly, I. and Pankratov, O. 1999 Phys. Rev. B 60, 15550.CrossRefGoogle Scholar
[9]O'Neil, T. 1965 Phys. Fluids 8, 2255.CrossRefGoogle Scholar
[10]Chirikov, B. V. 1979 Phys. Rep. 52, 263.CrossRefGoogle Scholar
[11]Escande, D. F. 1982 Phys. Scr. T2, 126.CrossRefGoogle Scholar
[12]Dodin, I. Y. and Fisch, N. J. 2010 Phys. Lett. A 374, 3472.CrossRefGoogle Scholar
[13]Kentwell, G. W. and Jones, D. A. 1987 Phys. Rep. 145, 319.CrossRefGoogle Scholar
[14]Reif, F. 1965 Fundamentals of Statistical and Thermal Physics, Secs. 5–7. Columbus, OH: McGraw-Hill.Google Scholar
[15]Fisch, N. J. and Rax, J. M. 1993 Phys. Fluids B 5, 1754.CrossRefGoogle Scholar
[16]Gardner, C. S. 1963 Phys. Fluids 6, 839.CrossRefGoogle Scholar
[17]Dodin, I. Y. and Fisch, N. J. 2005 Phys. Lett. A 341, 187.CrossRefGoogle Scholar
[18]Fisch, N. J. and Rax, J. M. 1992 Phys. Rev. Lett. 69, 612.CrossRefGoogle Scholar
[19]Stepanov, N. S. 1963 Izv. Vyssh. Uchebn. Zaved. Radiofiz. 6, 112.Google Scholar
[20]Fisch, N. J. 1987 Rev. Mod. Phys. 59, 175.CrossRefGoogle Scholar