Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T14:10:35.676Z Has data issue: false hasContentIssue false

Equivalent charge of photons in a very dense quantum plasma

Published online by Cambridge University Press:  01 February 2008

L. A. RIOS
Affiliation:
Institut für Theoretische Physik IV, Ruhr-Universität Bochum, D-44780 Bochum, Germany ([email protected])
P. K. SHUKLA
Affiliation:
Institut für Theoretische Physik IV, Ruhr-Universität Bochum, D-44780 Bochum, Germany ([email protected]) School of Physics, University of KwaZulu-Natal, Durban 4000, South Africa
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The equivalent charge of photons in dense unmagnetized and magnetized Fermi plasmas is determined through the plasma physics method. This charge is associated with the polarization of the medium caused by the ponderomotive force of the electromagnetic waves. Relations for the coupling between the electron plasma density perturbation and the radiation fields are derived for unmagnetized and magnetized plasmas, taking into account the quantum force associated with the quantum Bohm potential in dense Fermi plasmas. The effective photon charge is then determined. The effects of the ion motion are also included in the investigation.

Type
Letter to the Editor
Copyright
Copyright © Cambridge University Press 2007

References

[1]Cocconi, G. 1988 Phys. Lett. B 206, 705.CrossRefGoogle Scholar
[2]Raffelt, G. 1994 Phys. Rev. D 50, 7729.Google Scholar
[3]Kobychev, V. V. and Popov, S. B. 2005 Astron. Lett. 31, 147.CrossRefGoogle Scholar
[4]Semertzidis, Y. K., Danby, G. T and Lazarus, D. M. 2003 Phys. Rev. D 50, 017701.Google Scholar
[5]Caprini, C. and Ferreira, P. G. 2005 J. Cosmol. Astropart. Phys. 02, 006.CrossRefGoogle Scholar
[6]Mendonça, J. T., Silva, L. O., Bingham, R., Tsintsadze, N. L., Shukla, P. K. and Dawson, J. M. 1998 Phys. Lett. A 50, 373.CrossRefGoogle Scholar
[7]Tsintsadze, N. L., Mendonça, J. T. and Shukla, P. K. 1998 Phys. Lett. A 50, 110.CrossRefGoogle Scholar
[8]Wilks, S. C., Kruer, W. L., Tabak, M. and Langdon, A. B. 1992 Phys. Rev. Lett. 69, 1383.CrossRefGoogle Scholar
Bulanov, S. V., Lontano, M., Esirkepov, T. Zh., Pegoraro, F. and Pukhov, A. M. 1996 Phys. Rev. Lett. 76, 3562.CrossRefGoogle Scholar
Borghesi, M., MacKinnon, A. J., Bell, A. R., Gaillard, R. and Willi, O. 1998 Phys. Rev. Lett. 81, 112.CrossRefGoogle Scholar
Clark, E. L. et al. 2000 Phys. Rev. Lett. 84, 670.CrossRefGoogle Scholar
Pollock, B. B. et al. 2006 Rev. Sci. Instrum. 77, 114703.CrossRefGoogle Scholar
[9]Mendonça, J. T. 2001 Theory of Photon Acceleration. Bristol: Institute of Physics.CrossRefGoogle Scholar
Bingham, R., Mendonça, J. T. and Shukla, P. K. 2004 Plasma Phys. Control. Fusion 46, R1.CrossRefGoogle Scholar
[10]Geddes, C. G. R., Tóth, Cs., van Tilborg, J., Esarey, E., Schroeder, C. B., Bruhwiler, D., Nicter, C., Cary, J. and Leemans, W. P. 2004 Nature 50, 538.CrossRefGoogle Scholar
[11]Leemans, W. P., Nagler, B., Gonsalves, A. J., Tóth, Cs., Nakamura, K., Geddes, C. G. R., Esarey, E., Schroeder, C. B. and Hooker, S. M. 2006 Nature Phys. 50, 696.CrossRefGoogle Scholar
[12]Wilks, S. C., Dawson, J. M., Mori, W. B., Katsouleas, T. and Jones, M. E. 1989 Phys. Rev. Lett. 62, 2600.CrossRefGoogle Scholar
[13]Murphy, C. D. et al. 2006 Phys. Plasmas 50, 033108.CrossRefGoogle Scholar
[14]Becker, K., Koutsospyros, A., Yin, S.-M., Christodoulatos, C., Abramzon, N., Joaquin, J. C., Brelles-Mariño, G. 2005 Plasma Phys. Control. Fusion 47, B513.CrossRefGoogle Scholar
[15]Robinson, I. K., Bennett, P. A. and Himpsel, F. J. 2002 Phys. Rev. Lett. 88, 096104.CrossRefGoogle Scholar
Tilke, A. T., Simmel, F. C., Lorenz, H., Blick, R. H. and Kotthaus, J. P. 2003 Phys. Rev. B 50, 075311.CrossRefGoogle Scholar
[16]Markowich, P. A., Ringhofer, C. A. and Schmeiser, C. 1990 Semiconductor Equations. Berlin: Springer.CrossRefGoogle Scholar
[17]Haas, F., Manfredi, G. and Feix, M. 2000 Phys. Rev. E 50, 2763.Google Scholar
[18]Gardner, C. L. and Ringhofer, C. 1996 Phys. Rev. E 53, 157.Google Scholar
Shukla, P. K. and Eliasson, B. 2006 Phys. Rev. Lett. 96, 245001.CrossRefGoogle Scholar
Shukla, P. K. and Eliasson, B. 2007 New J. Phys. 9, 98.CrossRefGoogle Scholar
[19]Shukla, P. K. and Stenflo, L. 2006 Phys. Plasmas 13, 044505.CrossRefGoogle Scholar
[20]Glenzer, S. H. et al. 2007 Phys. Rev. Lett. 50, 065002.CrossRefGoogle Scholar
[21]Marklund, M. and Shukla, P. K. 2006 Rev. Mod. Phys. 78, 591.CrossRefGoogle Scholar
[22]Shukla, P. K., Tsintsadze, N. L., Mendonça, J. T. and Stenflo, L. 1999 Phys. Plasmas 50, 627.CrossRefGoogle Scholar
[23]Shukla, P. K. and Stenflo, L. 1984 Phys. Rev. A 30, 2110.CrossRefGoogle Scholar
Shukla, P. K., Rao, N. N., Yu, M. Y. and Tsintsadze, N. L. 1986 Phys. Rep. 138, 1.CrossRefGoogle Scholar
[24]Karpman, V. I. and Washimi, H. 1977 J. Plasma Phys. 18, 173.CrossRefGoogle Scholar