Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T00:23:00.975Z Has data issue: false hasContentIssue false

Envelope solitons of surface waves in a plasma column

Published online by Cambridge University Press:  13 March 2009

D. Grozev
Affiliation:
Faculty of Physics, Sofia University, 1126 Sofia, Bulgaria
A. Shivarova
Affiliation:
Faculty of Physics, Sofia University, 1126 Sofia, Bulgaria
A. D. Boardman
Affiliation:
Department of Pure and Applied Physics, University of Salford, Salford M5 4WT, England

Abstract

The problem of envelope solitons of surface waves is considered on the basis of results for the nonlinear dispersion relation of the waves in a plasma column. The soliton solutions are derived as particular cases of the general solutions obtained by a universal procedure and expressed in terms of Jacobi elliptic functions. Since the two types of interactions, namely the (ω + ω) – ω and the (ω – ω) + ω interactions (where ω is the frequency of the carrier wave) included in the nonlinear dispersion relation act in opposite ways, existence both of bright and dark solitons is shown to be possible. The effect of the ponderomotive force that in our case is expressed through the contribution of the (ω – ω) + ω interaction leads to the formation of dark solitons. The effect of the losses is also considered.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aliev, Yu. M., Boev, A. G. & Shivarova, A. P. 1982 Phys. Lett. 92A, 235.CrossRefGoogle Scholar
Aliev, Yu. M., Kuznetsov, S. & Shivarova, A. 1986 Proceedings of 2nd International Conference on Surface Waves in Plasmas and Solids, Ohrid. World Scientific.Google Scholar
Atanassov, V., Mateev, E. & Zhelyazkov, I. 1981 Phys. Lett. 86A, 414.CrossRefGoogle Scholar
Gradov, O. M. & Stenflo, L. 1982 Phys. Fluids, 25, 983.Google Scholar
Gradov, O. M., Stenflo, L. & Sünder, D. 1985 J. Plasma Phys. 33, 53.CrossRefGoogle Scholar
Grozev, D. & Shivarova, A. 1984 J. Plasma Phys. 31, 177.CrossRefGoogle Scholar
Hasegawa, A. & Kodama, Y. 1981 Proc. IEEE, 69, 1145.Google Scholar
Karpman, V. I. 1973 Nonlinear Waves in Dispersive Media. Nauka.Google Scholar
Kodama, Y. & Ablomitz, M. J. 1981 Stud. Appl. Math. 64, 223.CrossRefGoogle Scholar
Kostov, N. & Shivarova, A. 1983 Plasma Phys. 25, 891.Google Scholar
Mendonça, J. T. & , A. B. 1985 IEEE Trans. Plasma Sci. PS13, 104.Google Scholar
Nayfeh, A. H. & Mook, D. T. 1979 Nonlinear Oscillations. Wiley.Google Scholar
Nickerson, S. B. & Johnston, T. W. 1979 Phys. Lett. 73A, 20.Google Scholar
Rasmussen, J. J. 1978 Plasma Phys. 20, 997.Google Scholar
Rayzer, Yu. P. 1980 Foundations of Modern Physics of Gas-Discharge Processes. Nauka.Google Scholar
Stenflo, L., Yu, M. Y. & Zhelyazkov, I. 1983 Beitr. Plasmaphys. 23, 621.Google Scholar
Stenflo, L. & Yu, M. Y. 1986 Proceedings of 2nd International Conference on Surface Waves in Plasmas and Solids, Ohrid. World Scientific.Google Scholar
Stenflo, L. & Gradov, O. M. 1986 IEEE Trans. Plasma. Sci. PS-14, 554.Google Scholar
Vladimirov, S. V. & Tsytovich, V. N. 1985 Fizika Plazmy, 11, 1458.Google Scholar
Yu, M. Y. & Zhelyazkov, I. 1978 J. Plasma Phys. 20, 183.CrossRefGoogle Scholar
Zhelyazkov, I., Stoyanov, O. & Yu, M. Y. 1984 Plasma Phys. Contr. Fusion, 26, 813.Google Scholar