Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T00:49:43.699Z Has data issue: false hasContentIssue false

Envelope solitons at a plasma–vacuum interface

Published online by Cambridge University Press:  01 April 2008

P. K. SHUKLA
Affiliation:
Faculty of Physics and Astronomie, Ruhr University Bochum, D-44780 Bochum, Germany Department of Physics, Umeå University, SE-90187 Umeå, Sweden School of Physics, University of KwaZulu-Natal, Durban 4000, South Africa
L. STENFLO
Affiliation:
Faculty of Physics and Astronomie, Ruhr University Bochum, D-44780 Bochum, Germany Department of Physics, Umeå University, SE-90187 Umeå, Sweden
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It is shown that a nonlinear surface plasma wave at a plasma–vacuum interface can propagate in the form of a dark/grey envelope soliton. The latter is associated with a subsonic density cavity, which traps the complex surface wave electric field.

Type
Letter to the Editor
Copyright
Copyright © Cambridge University Press 2008

References

[1]Agranovich, V. M. 1975 Sov. Phys. Usp. 18, 99.CrossRefGoogle Scholar
[2]Agranovich, V. M., Babichenko, V. S. and Chernyak, V. Ya. 1981 JETP Lett. 32, 512.Google Scholar
[3]Agranovich, V. M. and Mills, D. L. 1982 Surface Polaritons. Amsterdam: North-Holland.Google Scholar
[4]Raether, H. 1988 Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer Tracts in Modern Physics, 11). New York: Springer.CrossRefGoogle Scholar
[5]Vukovic, S. 1996 Surface Waves in Plasmas and Solids. Singapore: World-Scientific.Google Scholar
[6]Vladimirov, S. V., Yu, M. Y. and Tsytovich, V. N. 1994 Phys. Rep. 241, 1.CrossRefGoogle Scholar
[7]Barnes, W. L., Dereux, A. and Ebbesen, T. W. 2003 Nature (London) 424, 824.Google Scholar
[8]Diaconsu, B. et al. 2007 Nature (London) 448, 57.CrossRefGoogle Scholar
[9]Wang, X. et al. 2007 Phys. Rev. Lett. 98, 123903.CrossRefGoogle Scholar
[10]Alfassi, B. et al. 2007 Phys. Rev. Lett. 98, 213901.Google Scholar
[11]Ritchie, R. H. 1963 Prog. Theor. Phys. (Kyoto) 29, 607.CrossRefGoogle Scholar
[12]Kaw, P. K. and McBride, J. B. 1970 Phys. Fluids 13, 1784.Google Scholar
[13]Gradov, O. M. and Stenflo, L. 1983 Phys. Rep. 94, 111.Google Scholar
[14]Brodin, G. and Gradov, O. M. 1991 J. Plasma Phys. 46, 459.CrossRefGoogle Scholar
[15]Lundberg, J. and Brodin, G. 1995 Phys. Rev. Lett. 74, 1994.Google Scholar
[16]Kumar, G. and Tripathi, V. K. 2007 Appl. Phys. Lett. 91, 161503.CrossRefGoogle Scholar
[17]Yu, M. Y. and Zhelyazkov, I. 1978 J. Plasma Phys. 20, 183.Google Scholar
[18]Schamel, H., Yu, M. Y. and Shukla, P. K. 1977 Phys. Fluids 20, 1286.CrossRefGoogle Scholar
[19]Yu, M. Y. and Shukla, P. K. 1977 Plasma Phys. 19, 889.Google Scholar
[20]Sharma, R. P. and Shukla, P. K. 1983 Phys. Fluids 26, 87.Google Scholar
[21]Shukla, P. K. and Stenflo, L. 1984 Phys. Rev. A 30, 2119.Google Scholar
[22]Kaufman, A. N. and Stenflo, L. 1975 Phys. Scr. 11, 269.CrossRefGoogle Scholar
[23]Stenflo, L. 1982 Phys. Rev. Lett. 48, 1441.CrossRefGoogle Scholar
[24]Shukla, P. K. and Yu, M. Y. 1982 Phys. Rev. Lett. 49, 696.CrossRefGoogle Scholar
[25]Hasegawa, A. and Tappert, F. 1973 Appl. Phys. Lett. 23, 112.Google Scholar
[26]Hasegawa, A. 1990 Optical Solitons in Fibers. Berlin: Springer.CrossRefGoogle ScholarPubMed
[27]Fedele, R. and Schamel, H. 2002 Eur. Phys. J. B 27, 313.CrossRefGoogle Scholar
[28]Fedele, R. 2002 Phys. Scr. 65, 502.Google Scholar
[29]Kourakis, I., Lazarides, N. and Tsironis, G. P. 2007 Phys. Rev. E 75, 067601.Google Scholar