Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T15:29:22.239Z Has data issue: false hasContentIssue false

Electrostatic heat flux instabilities

Published online by Cambridge University Press:  13 March 2009

S. Peter Gary
Affiliation:
Los Alamos Scientific Laboratory, University of California, Los Alamos, NM 87545

Abstract

The linear Vlasov dispersion relation for electrostatic waves in a homogeneous plasma is studied for instabilities driven by an electron heat flux. A two Maxwellian model of the electron distribution function gives rise to three unstable modes: the electron beam, ion-acoustic and ion cyclotron heat flux instabilities. At large Te/Ti the ion-acoustic instability has the lowest threshold; at small Te/Ti the electron beam instability is dominant; and at intermediate values of Te/Ti the ion cyclotron mode is the first to go unstable. The presence of a high energy tail on the electron distribution function raises the value of the dimensionless heat flux qe/(nemev3e) at the ion-acoustic threshold, but increasing atomic number of the ions decreases this value.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abraham-Shrauner, B. & Feldman, W. C. 1977 J. Geophys. Res. 82, 1889.CrossRefGoogle Scholar
Bickerton, R. J. 1973 Nucl. Fusion, 13, 457.CrossRefGoogle Scholar
Feldman, W. C., Asbridge, J. R., Bame, S. J., Montgomery, M. D. & Gary, S. P. 1975 J. Geophys. Res. 80, 4181.CrossRefGoogle Scholar
Feldman, W. C., Asbridge, J. R., Bame, S. J. & Montgomery, M. D. 1973 J. Geophys. Res. 78, 3697.CrossRefGoogle Scholar
Forslund, D. W. 1970 J. Geophys. 75, 17.CrossRefGoogle Scholar
Fried, B. D. & Conte, S. D. 1961 The Plasma Dispersion Function. Academic.Google Scholar
Gary, S. P. 1970 J. Plasma Phys. 4, 753.CrossRefGoogle Scholar
Gary, S. P. 1978 J. Geophys. Res. 83.Google Scholar
Gary, S. P., Feldman, W. C., Forslund, D. W. & Montgomery, M. D. 1975 a Geophys. Res. Lett. 2, 79.CrossRefGoogle Scholar
Gary, S. P., Feldman, W. C., Forslund, D. W. & Montgomery, M. D. 1975 b J. Geophys. Res. 80, 4197.CrossRefGoogle Scholar
Gary, S. P. & Feldman, W. C. 1977 J. Geophys. Res. 82, 1087.CrossRefGoogle Scholar
Gray, D. R., Kilkenny, J. D., White, M. S., Blyth, P. & Hull, D. 1977 Phys. Rev. Lett. 39, 1270.CrossRefGoogle Scholar
Ivanov, A. A., Kozorovitskii, L. L., Rusanov, V. D., Sagdeev, R. Z. & Sobolenko, D. N. 1971 Soviet Phys. JETP Letters, 14, 412.Google Scholar
Jones, W. D., Lee, A., Gleman, S. M. & Doucet, H. J. 1975 Phys. Rev. Lett. 35, 1349.CrossRefGoogle Scholar
Kindel, J. M. & Kennel, C. F. 1971 J. Geophys. Res. 76, 3055.CrossRefGoogle Scholar
Malone, R. C., McCrory, R. L. & Morse, R. L. 1975 Phys. Rev. Lett. 34, 721.CrossRefGoogle Scholar
Manheimer, W. M. 1977 Phys. Fluids, 20, 265.CrossRefGoogle Scholar
Manheimer, W. M., Colombant, D. & Flynn, R. 1976 Phys. Fluids, 19, 1354.CrossRefGoogle Scholar
Manheimer, W. M., Colombant, D. G. & Ripin, B. H. 1977 Phys. Rev. Lett. 38, 1135.CrossRefGoogle Scholar
Manheimer, W. M. & Klein, H. H. 1975 Phys. Fluids, 18, 1299.CrossRefGoogle Scholar
Singer, C. E. 1977 J. Geophys. Res. 82, 2686.CrossRefGoogle Scholar
Singer, C. E. & Roxburgh, I. W. 1977 J. Geophys. Res. 82, 2677.CrossRefGoogle Scholar
Stix, T. H. 1962 The Theory of Plasma Waves. McGraw-Hill.Google Scholar
Whang, Y. C. 1971 J. Geophys. Res. 76, 7503.CrossRefGoogle Scholar
Zolotovskii, O. A., Koroteev, V. I., Kurtmullaev, R. Kh. & Semenov, V. N. 1971 Soviet Phys. Doklady, 16, 223.Google Scholar