Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T14:01:18.803Z Has data issue: false hasContentIssue false

The electronic identity of inductive and capacitive plasmas

Published online by Cambridge University Press:  01 April 2008

K. T. A. L. BURM*
Affiliation:
PlasmAIX for Plasma Research, Xantenstraat 32, 2440 Geel, Belgium ([email protected])

Abstract

An electronic identity relation, relating capacitively coupled plasma sources to corresponding inductively coupled plasma sources, has been derived, starting from the Maxwell relations for matter and the characteristics of a capacitor and of an inductor. Furthermore, the breakdown conditions for both capacitively coupled plasmas and for inductively coupled plasmas as well as their optimal operation frequency ranges are discussed.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Griffiths, D. J. 1998 Introduction To Electrodynamics, 3rd edn. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
[2]Chen, Z. and Roth, J. 2002 Gaseous Electronics Conference, 15–18 October, Minneapolis MN. APS: Minneapolis.Google Scholar
[3]Chung, T. H., Yoon, H. J., Kim, T. S. and Lee, J. K. 1996 J. Phys. D: Appl. Phys. 29, 10141020.CrossRefGoogle Scholar
[4]Goedheer, W. J. 1997 Course on ‘Low Temperature Plasma Physics and Applications’ Eindhoven University of Technology, 3–9 July.Google Scholar
[5]Liebermann, M. and Lichtenberg, A. 1994 Principles of Plasma Discharges and Materials Processing. New York: Wiley.Google Scholar
[6]Chen, F. 1984 Introduction to Plasma Physics and Controlled Fusion. New York: Plenum.CrossRefGoogle Scholar
[7]Bartnikas, R. and McMahon, E. 1979 Engineering Dielectric, Vol. 1, Corona Measurement and Interpretation (ASTM, STP 669). Philadelphia, PA: ASTM.CrossRefGoogle Scholar
[8]Swift, J. D. and Schwar, M. J. R. 1969 Electrical Probes for Plasma Diagnostics. New York: Elsevier.Google Scholar
[9]Hollenstein, Ch. 1997 Plasma diagnostics I. Course on ‘Low Temperature Plasma Physics and Applications’ Eindhoven University of Technology.Google Scholar
[10]Mitchner, M. and Kruger, C. H. 1973 Partially Ionized Gases. New York: Wiley.Google Scholar
[11]Brussaard, G. J. H.van der Steen, M.Carrère, M.van de Sanden, M. C. M. and Schram, D. C. 1996 Phys. Rev. E 54 (2), 19061911.Google Scholar
[12]Boulos, M. I., Fauchais, P. and Pfender, E. 1994 Thermal Plasmas. New York: Plenum.CrossRefGoogle Scholar
[13]Braginskii, S. I. 1965 Reviews of Plasma Physics (ed. Leontovich, M. A.). New York: Plenum.Google Scholar
[14]Burm, K. T. A. L., Goedheer, W. J. and Schram, D. C. 2002 Plasma Chem. Plasma Proc. 22 (3), 413.CrossRefGoogle Scholar
[15]Sansonnens, L., Howling, A. A. and Hollenstein, Ch. 2006 Plasma Sources Sci. Technol. 15, 302313.CrossRefGoogle Scholar