Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-04T04:53:23.339Z Has data issue: false hasContentIssue false

Electron-emission-induced cooling of boundary region in fusion devices

Published online by Cambridge University Press:  01 August 2014

Sanjay K. Mishra
Affiliation:
Institute for Plasma Research (IPR), Gandhinagar, Gujarat, India
K. Avinash*
Affiliation:
Department of Physics, Delhi University, New Delhi, India
Predhiman Kaw
Affiliation:
Institute for Plasma Research (IPR), Gandhinagar, Gujarat, India
*
Email address for correspondence: [email protected]

Abstract

In this brief communication we have explored whether the electron emission from the boundary region surfaces (or from additional fine structured dust particles/droplets of some benign material put purposely in the area surrounding the surfaces) can act as an efficient cooling mechanism for boundary region surfaces/dust electrons and hence the lattice. In order to estimate the contribution of this cooling process a simple kinetic model based on charge flux balance and associated energetics has been established. Along with some additional sophistication like suitable choice of material and modification in the work function via surface coating, the estimates show that it is possible to keep the temperature of the plate/particles well within the critical limit, i.e. melting/sublimation point for the desired regime of incident heat flux.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Canik, J.et al. 2009 J. Nucl. Mater. 390–391 315.CrossRefGoogle Scholar
Hutchinson, H. 2003 Plasma Phys. Control. Fusion 45 1477.Google Scholar
ITER Physics Expert Group on Divertor et al. 1999 Nucl. Fusion 39 2391.CrossRefGoogle Scholar
Loarte, A.et al. 2007 Nucl. Fusion 47 S203.Google Scholar
Matyash, K.et al. 2007 J. Nucl. Mater. 363–365 458.Google Scholar
Mishra, S. K., Misra, S. and Sodha, M. S. 2010 Phys. Plasmas 17 113705.Google Scholar
Mishra, S. K., Misra, S. and Sodha, M. S. 2011 Phys. Plasmas 18 103708.Google Scholar
Mishra, S. K., Misra, S. and Sodha, M. S. 2014 Plasma Phys. Cont. Fusion 56, 055005.Google Scholar
Shukla, P. K. and Mamun, A. A. 2002 Introduction to Dusty Plasma Physics. Bristol: IOP.Google Scholar
Sodha, M. S. and Guha, S. 1971 Physics of colloidal plasma. In: Adv. Plasma Phys., Vol. 4 (ed. Simon, A. and Thomas, W. B.). New York: Interscience, p. 219.Google Scholar
Sodha, M. S., Misra, S. and Mishra, S. K. 2009a Phys. Plasmas 16 123705.Google Scholar
Sodha, M. S., Mishra, S. K. and Misra, S. 2009b Phys. Plasmas 16 123701.Google Scholar
Soukhanovskii, V. A.et al. 2011 Nucl. Fusion 51 012001.Google Scholar
Tskhakaya, D. D.et al. 2001 Phys. Scripta 64 366.Google Scholar
Tsytovich, V. N., Morfill, G. E., Vladimirov, S. V. and Thomas, H. M. 2008 Elementary Physics of Complex Plasmas. Berlin: Springer.Google Scholar
Tsytovich, V. N. and Winter, J. 1998 Physics Uspekhi 41 815.CrossRefGoogle Scholar
Vladimirov, S. V., Ostrikov, K. and Samarian, A. A. 2005 Physics and Applications of Complex Plasmas. London: Imperial College Press.Google Scholar
Winter, J. 1998 Plasma Phys. Control. Fusion 40 1201.Google Scholar