Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T01:17:10.493Z Has data issue: false hasContentIssue false

Electron trapping and acceleration in plasma wake field produced by an evolving hollow electron beam

Published online by Cambridge University Press:  01 February 2021

Xiangyang Liu
Affiliation:
Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Institute of Modern Physics, Department of Nuclear Science and Technology, Fudan University, Shanghai200433, PR China Institute of Fluid Physics, CAEP, Mianyang621900, PR China
Junfan Qu
Affiliation:
Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Institute of Modern Physics, Department of Nuclear Science and Technology, Fudan University, Shanghai200433, PR China
Peng Liu
Affiliation:
Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Institute of Modern Physics, Department of Nuclear Science and Technology, Fudan University, Shanghai200433, PR China
Houchen Fan
Affiliation:
Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Institute of Modern Physics, Department of Nuclear Science and Technology, Fudan University, Shanghai200433, PR China
Ling Cai
Affiliation:
Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Institute of Modern Physics, Department of Nuclear Science and Technology, Fudan University, Shanghai200433, PR China
Feng Zhang
Affiliation:
Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Institute of Modern Physics, Department of Nuclear Science and Technology, Fudan University, Shanghai200433, PR China
Qin Yu
Affiliation:
Shanghai Institute of Optics and Fine Mechanics, Shanghai201800, PR China
Xiaofeng Li
Affiliation:
Key Laboratory for Laser Plasmas (MoE), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai200240, PR China Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai200240, PR China
Linwen Zhang
Affiliation:
Institute of Fluid Physics, CAEP, Mianyang621900, PR China
Qing Kong*
Affiliation:
Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Institute of Modern Physics, Department of Nuclear Science and Technology, Fudan University, Shanghai200433, PR China
*
Email address for correspondence: [email protected]

Abstract

In this article, the electron trapping and acceleration in the wake field driven by an ultrarelativistic hollow electron beam is studied. When the hollow driver injects into plasma, there is a doughnut-shaped electron bubble formed because of the existence of a special ‘backflow’ beam in the centre of the electron bubble. At the same time, there is a transverse convergence of the hollow driver, which leads to the weakening of the backflow beam. This results in a local electron density transition at the rear of the bubble. During this process, there is an expansion of the longitudinal electron bubble size, and a bunch of background electrons is trapped by the wake field at the rear of the bubble. The tracks for the trapped electrons show that there are two sources: one is from the bubble sheath and the other is from the unique backflow beam. In the particle-in-cell simulation where the driving beam has initial energy of $1.0$ GeV per particle, the trapped beam can be accelerated to energy of more than $1.5$ GeV per particle and the corresponding transformer ratio is $1.5$. With the increase of driving beam energy up to $40.0$ GeV, a transformer ratio of $1.4$ still can be achieved. By adjusting the hollow beam density, it is possible to control the trapped beam charge value and beam quality, such as its energy spread and transverse emittance.

Type
Research Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arber, T. D., Bennett, K., Brady, C. S., Lawrence-Douglas, A., Ramsay, M. G., Sircombe, N. J., Gillies, P., Evans, R. G., Schmitz, H., Bell, A. R., et al. 2015 Contemporary particle-in-cell approach to laser-plasma modelling. Plasma Phys Control. Fusion 57 (11), 113001.CrossRefGoogle Scholar
Blumenfeld, I., Clayton, C. E., Decker, F.-J., Hogan, M. J., Huang, C., Ischebeck, R., Iverson, R., Joshi, C., Katsouleas, T., Kirby, N., et al. 2007 Energy doubling of 42 GeV electrons in a metre-scale plasma wakefield accelerator. Nature 445 (7129), 741744.CrossRefGoogle Scholar
Che, H. O., Kong, Q., Mao, Q. Q., Wang, P. X., Ho, Y. K. & Kawata, S. 2009 Wakefield driven by Gaussian $(1,0)$ mode laser pulse and laser-plasma electron acceleration. Appl. Phys. Lett. 95 (9), 091501.CrossRefGoogle Scholar
Chen, P., Dawson, J. M., Huff, R. W. & Katsouleas, T. 1985 Acceleration of electrons by the interaction of a bunched electron beam with a plasma. Phys. Rev. Lett. 54, 693696.CrossRefGoogle ScholarPubMed
Floettmann, K. 2003 Some basic features of the beam emittance. Phys. Rev. Spec. Top. AC 6 (3), 034202.Google Scholar
Geddes, C. G. R., Nakamura, K., Plateau, G. R., Toth, C., Cormier-Michel, E., Esarey, E., Schroeder, C. B., Cary, J. R. & Leemans, W. P. 2008 Plasma-density-gradient injection of low absolute-momentum-spread electron bunches. Phys. Rev. Lett. 100, 215004.CrossRefGoogle ScholarPubMed
Gonsalves, A., Nakamura, K., Daniels, J., Benedetti, C., Pieronek, C., de Raadt, T., Steinke, S., Bin, J., Bulanov, S., van Tilborg, J., et al. 2019 Petawatt laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide. Phys. Rev. Lett. 122 (8), 084801.CrossRefGoogle Scholar
Grebenyuk, J., de la Ossa, A. M., Mehrling, T. & Osterhoff, J. 2014 Beam-driven plasma-based acceleration of electrons with density down-ramp injection at FLASHForward. Nucl. Instrum. Meth. Phys. Res. 740, 246249.CrossRefGoogle Scholar
Jain, N. 2019 Evolution of ultra-relativistic hollow electron beams during their propagation in plasmas. Phys. Plasmas 26 (2), 023107.CrossRefGoogle Scholar
Jain, N., Antonsen, T. M. & Palastro, J. P. 2015 Positron acceleration by plasma wakefields driven by a hollow electron beam. Phys. Rev. Lett. 115, 195001.CrossRefGoogle ScholarPubMed
Kallos, E., Katsouleas, T., Kimura, W. D., Kusche, K., Muggli, P., Pavlishin, I., Pogorelsky, I., Stolyarov, D. & Yakimenko, V. 2008 High-gradient plasma-wakefield acceleration with two subpicosecond electron bunches. Phys. Rev. Lett. 100 (7), 074802.CrossRefGoogle ScholarPubMed
Kalmykov, S. Y., Yi, S. A., Beck, A., Lifschitz, A. F., Davoine, X., Lefebvre, E., Khudik, V., Shvets, G. & Downer, M. C. 2010 Dark-current-free petawatt laser-driven wakefield accelerator based on electron self-injection into an expanding plasma bubble. Plasma Phys. Control. Fusion 53 (1), 014006.CrossRefGoogle Scholar
Katsouleas, T. 1986 Physical mechanisms in the plasma wake-field accelerator. Phys. Rev. A 33, 20562064.CrossRefGoogle ScholarPubMed
Kostyukov, I., Pukhov, A. & Kiselev, S. 2004 Phenomenological theory of laser-plasma interaction in ‘bubble’ regime. Phys. Plasmas 11 (11), 52565264.CrossRefGoogle Scholar
Leemans, W. P., Nagler, B., Gonsalves, A. J., Tóth, C., Nakamura, K., Geddes, C. G. R., Esarey, E., Schroeder, C. B. & Hooker, S. M. 2006 GeV electron beams from a centimetre-scale accelerator. Nat. Phys. 2 (10), 696699.CrossRefGoogle Scholar
Lu, W., Huang, C., Zhou, M., Tzoufras, M., Tsung, F. S., Mori, W. B. & Katsouleas, T. 2006 A nonlinear theory for multidimensional relativistic plasma wave wakefields. Phys. Plasmas 13 (5), 056709.CrossRefGoogle Scholar
Manahan, G. G., Habib, A. F., Scherkl, P., Delinikolas, P., Beaton, A., Knetsch, A., Karger, O., Wittig, G., Heinemann, T., Sheng, Z. M., et al. 2017 Single-stage plasma-based correlated energy spread compensation for ultrahigh 6D brightness electron beams. Nat. Commun. 8 (1).CrossRefGoogle ScholarPubMed
Mendonça, J. T. & Vieira, J. 2014 Donut wakefields generated by intense laser pulses with orbital angular momentum. Phys. Plasmas 21 (3), 033107.CrossRefGoogle Scholar
Mora, P. & Antonsen, T. M. Jr. 1997 Kinetic modeling of intense, short laser pulses propagating in tenuous plasmas. Phys. Plasmas 4 (1), 217229.CrossRefGoogle Scholar
Martinez de la Ossa, A., Grebenyuk, J., Mehrling, T., Schaper, L. & Osterhoff, J. 2013 High-quality electron beams from beam-driven plasma accelerators by wakefield-induced ionization injection. Phys. Rev. Lett. 111, 245003.CrossRefGoogle ScholarPubMed
Martinez de la Ossa, A., Hu, Z., Streeter, M. J. V., Mehrling, T. J., Kononenko, O., Sheeran, B. & Osterhoff, J. 2017 Optimizing density down-ramp injection for beam-driven plasma wakefield accelerators. Phys. Rev. Accel. Beams 20, 091301.CrossRefGoogle Scholar
Martinez de la Ossa, A., Mehrling, T. J., Schaper, L., Streeter, M. J. V. & Osterhoff, J. 2015 Wakefield-induced ionization injection in beam-driven plasma accelerators. Phys. Plasmas 22 (9), 093107.CrossRefGoogle Scholar
Oz, E., Deng, S., Katsouleas, T., Muggli, P., Barnes, C. D., Blumenfeld, I., Decker, F. J., Emma, P., Hogan, M. J., Ischebeck, R., et al. 2007 Ionization-induced electron trapping in ultrarelativistic plasma wakes. Phys. Rev. Lett. 98, 084801.CrossRefGoogle ScholarPubMed
Pollock, B. B., Tsung, F. S., Albert, F., Shaw, J. L., Clayton, C. E., Davidson, A., Lemos, N., Marsh, K. A., Pak, A., Ralph, J. E., et al. 2015 Formation of ultrarelativistic electron rings from a laser-wakefield accelerator. Phys. Rev. Lett. 115, 055004.CrossRefGoogle ScholarPubMed
Rosenzweig, J. B., Cline, D. B., Cole, B., Figueroa, H., Gai, W., Konecny, R., Norem, J., Schoessow, P. & Simpson, J. 1988 Experimental observation of plasma wake-field acceleration. Phys. Rev. Lett. 61, 98101.CrossRefGoogle ScholarPubMed
Shen, Z.-C., Chen, M., Zhang, G.-B., Luo, J., Weng, S.-M., Yuan, X.-H., Liu, F. & Sheng, Z.-M. 2017 Acceleration and radiation of externally injected electrons in laser plasma wakefield driven by a Laguerre–Gaussian pulse. Chin. Phys. B 26 (11), 115204.CrossRefGoogle Scholar
Suk, H., Barov, N., Rosenzweig, J. B. & Esarey, E. 2001 Plasma electron trapping and acceleration in a plasma wake field using a density transition. Phys. Rev. Lett. 86, 10111014.CrossRefGoogle Scholar
Tajima, T. & Dawson, J. M. 1979 Laser electron accelerator. Phys. Rev. Lett. 43, 267270.CrossRefGoogle Scholar
Tzoufras, M., Lu, W., Tsung, F. S., Huang, C., Mori, W. B., Katsouleas, T., Vieira, J., Fonseca, R. A. & Silva, L. O. 2008 Beam loading in the nonlinear regime of plasma-based acceleration. Phys. Rev. Lett. 101, 145002.CrossRefGoogle ScholarPubMed
Tzoufras, M., Lu, W., Tsung, F. S., Huang, C., Mori, W. B., Katsouleas, T., Vieira, J., Fonseca, R. A. & Silva, L. O. 2009 Beam loading by electrons in nonlinear plasma wakes. Phys. Plasmas 16 (5), 056705.CrossRefGoogle Scholar
Vieira, J. & Mendonça, J. T. 2014 Nonlinear laser driven donut wakefields for positron and electron acceleration. Phys. Rev. Lett. 112, 215001.CrossRefGoogle Scholar
Wang, X., Zgadzaj, R., Fazel, N., Li, Z., Yi, S. A., Zhang, X., Henderson, W., Chang, Y.-Y., Korzekwa, R., Tsai, H.-E., et al. 2013 Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV. Nat. Commun. 4 (1), 1988.Google ScholarPubMed
Xu, X. L., Li, F., An, W., Dalichaouch, T. N., Yu, P., Lu, W., Joshi, C. & Mori, W. B. 2017 High quality electron bunch generation using a longitudinal density-tailored plasma-based accelerator in the three-dimensional blowout regime. Phys. Rev. Accel. Beams 20, 111303.CrossRefGoogle Scholar
Zhang, G.-B., Chen, M., Luo, J., Zeng, M., Yuan, T., Yu, J.-Y., Ma, Y.-Y., Yu, T.-P., Yu, L.-L., Weng, S.-M. & Sheng, Z.-M. 2016 a Acceleration of on-axis and ring-shaped electron beams in wakefields driven by Laguerre–Gaussian pulses. J. Appl. Phys. 119 (10), 103101.CrossRefGoogle Scholar
Zhang, G.-B., Chen, M., Schroeder, C. B., Luo, J., Zeng, M., Li, F.-Y., Yu, L.-L., Weng, S.-M., Ma, Y.-Y., Yu, T.-P., et al. 2016 b Acceleration and evolution of a hollow electron beam in wakefields driven by a Laguerre–Gaussian laser pulse. Phys. Plasmas 23 (3), 033114.CrossRefGoogle Scholar
Zhao, T. Z., Behm, K., Dong, C. F., Davoine, X., Kalmykov, S. Y., Petrov, V., Chvykov, V., Cummings, P., Hou, B., Maksimchuk, A., et al. 2016 High-flux femtosecond x-ray emission from controlled generation of annular electron beams in a laser wakefield accelerator. Phys. Rev. Lett. 117, 094801.CrossRefGoogle Scholar