Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T00:53:12.905Z Has data issue: false hasContentIssue false

Electron thermal transport in laser-target plasmas on the basis of Grad's 13-moment transport equations

Published online by Cambridge University Press:  13 March 2009

T. J. M. Boyd
Affiliation:
Department of Physics, University of Wales, Bangor, Wales
R. D. Lonsdale
Affiliation:
Department of Physics, University of Wales, Bangor, Wales
J. J. Sanderson
Affiliation:
Mathematical Institute, University of St Andrews, St Andrews, Scotland

Abstract

Grad's 13-moment theory is used to model thermal transport in laser-produced plasmas where conditions are such that one may not assume that the plasma is collision-dominated. The equations are presented for a multi-fluid model in slab geometry and are solved numerically for various cases. Comparisons are made with classical theory and with simulations of collisionless plasmas. Results show that, although there are differences between 13-moment and classical predictions, the two theories agree on the general behaviour of the plasma. In particular, 13-moment theory fails to explain the heat-flux inhibition implied by some experimental observations. The theory has also been applied to model thermal transport in plasmas with a population of suprathermal electrons.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barr, H. C. & Boyd, T. J. M. 1981 Phys. Rev. A 24, 2084.CrossRefGoogle Scholar
Barakat, A. R. & Schunk, R. W. 1982 J. Phys. D 15, 1195.Google Scholar
Bell, A. R. 1983 Proceedings of International Conference on Phenomena in Ionized Gases Dusseldorf, 29 Aug.–2 Sept. 1983 (Invited Papers) p, 131. University of Dusseldorf.Google Scholar
Bell, A. R., Evans, R. G. & Nicholas, D. J. 1981 Phys. Rev. Lett. 46, 243.CrossRefGoogle Scholar
Clause, P. J. & Balescu, R. 1982 Plasma Phys. 24, 1429.CrossRefGoogle Scholar
Craxton, R. S. & Haines, M. G. 1975 Phys. Rev. Lett. 35, 1336.CrossRefGoogle Scholar
Fechner, W. B. & Mayer, F. J. 1984 Phys. Fluids, 27, 1538.CrossRefGoogle Scholar
Gitomer, S. J. & Henderson, D. B. 1979 Phys. Fluids, 22, 364.CrossRefGoogle Scholar
Grad, H. 1949 Commun. Pure Appl. Maths, 2, 325.CrossRefGoogle Scholar
Grad, H. 1958 Handbuch der Physik (ed. Flugge, S.), vol. 12, p. 205. Springer.Google Scholar
Lindman, E. L. 1977 J. de Physique, 38 (Suppl. C6), 9.Google Scholar
Manheimer, W. M. 1977 Phys. Fluids, 20, 265.CrossRefGoogle Scholar
Matt, J. P. & Virmont, J. 1982 Phys. Rev. Lett. 49, 1936.CrossRefGoogle Scholar
Moses, G. A. & Duderstadt, J. J. 1977 Phys. Fluids, 20, 762.CrossRefGoogle Scholar
Salat, A. 1975 Plasma Phys. 17, 589.Google Scholar
Shirazion, M. H. & Steinhauer, L. C. 1981 Phys. Fluids, 24, 843.CrossRefGoogle Scholar
Spitzer, L. & Härm, R. 1953 Phys. Rev. 89, 977.CrossRefGoogle Scholar
Tanenbaum, B. S. 1967 Plasma Physics, p. 260. McGraw-Hill.Google Scholar