Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T14:38:27.489Z Has data issue: false hasContentIssue false

Electron cyclotron waves: dispersion and accessibility conditions in isotropic and anisotropic plasmas

Published online by Cambridge University Press:  13 March 2009

P. A. Robinson
Affiliation:
School of Physics, University of Sydney, N.S.W. 2006, Australia

Abstract

Dispersion and accessibility conditions for electron cyclotron waves are investigated for arbitrary weakly relativistic plasmas and for specific isotropic and loss-cone distributions. The transition between the cold plasma and vacuum dispersion relations is investigated as a function of temperature and density. The behaviour of mode structure (including mode coupling), cut-offs and resonances are also examined. Generalizations are obtained of earlier results which indicate that access by extraordinary waves to regions nearthe cyclotron layer from the low-field side is easier in weakly relativistic plasmas than predicted by cold plasma theory because of a reduction in the cut-off frequency of the fast extraordinary mode. This effect is found to be more pronounced in loss-cone distributions than in isotropic distributions, permitting access at temperatures considerably lower than those predicted in the isotropic case. Extra loss-cone modes are found to appear near the cyclotron frequency in loss-cone plasmas which also exhibit instabilities near the cyclotron harmonics.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Batchelor, D. B., Goldfinger, R. C. & Weitzner, H. 1984 Phys. Fluida, 27, 2835.CrossRefGoogle Scholar
Bornatici, M., Cano, R., De Barbieri, O. & Engelmann, F. 1983 Nucl. Fusion, 23, 1153.CrossRefGoogle Scholar
Bornatici, M., Engelmann, F., Maroli, C. & Petrillo, V. 1981 Plasma Phys. 23, 89.CrossRefGoogle Scholar
Calvert, W. 1981 Geophys. Res. Lett. 8, 919.CrossRefGoogle Scholar
Dnestrovskii, Y. N., Kostomarov, D. P. & Skrydlov, N. V. 1964 Soviet Phys. Tech. Phys. 8, 691.Google Scholar
Dory, R. A., Guest, G. E. & Harris, E. G. 1965 Phys. Rev. Lett. 14, 131.CrossRefGoogle Scholar
Fidone, I., Granata, G. & Meyer, R. L. 1982 Phys. Fluids, 25, 2249.CrossRefGoogle Scholar
Gandy, R. F., Hutchinson, I. H. & Yates, D. H. 1985 Phys. Rev. Lett. 54, 800.CrossRefGoogle Scholar
Hewitt, R. G. & Melrose, D. B. 1983 Aust. J. Phys. 36, 725.CrossRefGoogle Scholar
Hewitt, R. G., Melrose, D. B. & Rönnmark, K. G. 1982 Aust. J. Phys. 35, 447.CrossRefGoogle Scholar
Hsu, J. Y., Chan, V. S. & McClain, F. W. 1983 Phys. Fluids, 26, 3300.CrossRefGoogle Scholar
Lazzaro, E. & Ramponi, G. 1981 Plasma Phys. 23, 53.CrossRefGoogle Scholar
Melrose, D. B. & Dulk, G. A. 1982 Astrophys. J. 259, 844.CrossRefGoogle Scholar
Melrose, D. B., Rönnmark, K. G. & Hewitt, R. G. 1982 J. Geophys. Res. 87, 5140.CrossRefGoogle Scholar
Pritchett, P. L. 1984 Geophys. Res. Lett. 11, 143.CrossRefGoogle Scholar
Robinson, P. A. 1986 a Aust. J. Phys. 39. In press.CrossRefGoogle Scholar
Robinson, P. A. 1986 b J. Math. Phys. 27. In press.CrossRefGoogle Scholar
Sharma, R. R., Vlahos, L. & Papadopoulos, K. 1982 Astron. Astrophys. 112, 377.Google Scholar
Shkarofsky, I. P. 1966 a Phys. Fluids, 9, 561.CrossRefGoogle Scholar
Shkarofsky, I. P. 1966 b Phys. Fluids, 9, 570.CrossRefGoogle Scholar
Trubnikov, B. A. & Yakubov, V. B. 1963 Plasma Phys. 5, 7.Google Scholar
Winglee, R. M. 1983 Plasma Phys. 25, 217.CrossRefGoogle Scholar
Winglee, R. M. 1985 Astrophys. J. 291, 160.CrossRefGoogle Scholar
Wong, H. K., Wu, C. S., Ke, F. J., Schneider, R. S. & Ziebell, L. F. 1982 J. Plasma Phys. 28, 503.CrossRefGoogle Scholar
Wu, C. S. & Lee, L. C. 1979 Astrophys. J. 230, 621.CrossRefGoogle Scholar