Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-28T21:37:24.408Z Has data issue: false hasContentIssue false

Electron cyclotron absorption for oblique propagation in loss-cone plasmas

Published online by Cambridge University Press:  13 March 2009

L. F. Ziebell
Affiliation:
Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, 91500 Porto Alegre, RS, Brasil

Extract

The components of the dielectric tensor for a plasma described by a relativistic loss-cone electron distribution are written in a simple way, which takes full account of relativistic effects, harmonics and Larmor radius, for perpendicular and oblique propagation. For sufficiently oblique propagation and temperatures in the thermonuclear range, a still simpler form of the dielectric tensor is derived. The role of the wave parameters in the absorption is discussed, and some comments are made about the weakly relativistic and non-relativistic approaches. A numerical example is given for both the extraordinary and ordinary modes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abramowitz, M. & Stegun, I. A. 1970 Handbook of Mathematical Functions. Dover.Google Scholar
Airoldi, A. G. & Orefice, A. 1982 J. Plasma Phys. 27, 515.CrossRefGoogle Scholar
Akhiezer, A. I., Akhiezer, I. A., Polovin, R. V., Sitenko, A. G. & Stepanov, K. N. 1975 Plasma Electrodynamics, vol. 1. Pergamon.Google Scholar
Ando, A., Ogura, K., Tanaka, H., Iida, M., Ide, S., Nakamura, M., Maekawa, T., Terumichi, Y. & Tanaka, S. 1986 Nucl. Fusion, 26, 107.Google Scholar
Bornatici, M., Cano, R., De Barbieri, O. & Engelmann, F. 1983 Nucl. Fusion, 23, 1153.CrossRefGoogle Scholar
Bornatici, M. & Ruffina, U. 1986 Plasma Phys. Contr. Fusion, 28, 1589.CrossRefGoogle Scholar
Bornatici, M. & Ruffina, U. 1987 Internal Report, University of Pavia.Google Scholar
Fidone, I., Giruzzi, G., Krivenski, V. & Ziebell, L. F. 1986 Nucl. Fusion, 26, 1537.Google Scholar
Fidone, I., Giruzzi, G., Krivenski, V., Mazzucato, E. & Ziebell, L. F. 1987 Nucl. Fusion, 27, 579.CrossRefGoogle Scholar
Giruzzi, G., Krivenski, V., Fidone, I. & Ziebell, L. F. 1985 Plasma Phys. Contr. Fusion, 27, 1151.CrossRefGoogle Scholar
Krivenski, V. & Orefice, A. 1983 J. Plasma Phys. 30, 125.Google Scholar
Lau, Y. Y. & Chu, K. R. 1983 Phys. Rev. Lett. 50, 243.CrossRefGoogle Scholar
Le Quéau, D., Pellat, R. & Roux, A. 1984 J. Geophys. Res. 89, 2831.Google Scholar
Melrose, D. B., Rönnmark, K. G. & Hewitt, R. G. 1982 J. Geophys. Res. 87, 5140.CrossRefGoogle Scholar
Montes, A. & Dendy, R. O. 1986 Phys. Fluids, 29, 2988.Google Scholar
Omidi, N. & Gubnett, D. A. 1982 J. Geophys. Res. 87, 2377.Google Scholar
Omidi, N., Wu, C. S. & Gurnett, D. A. 1984 J. Geophys. Res. 89, 883.Google Scholar
Pritchett, P. L. 1984 Phys. Fluids, 27, 2393.CrossRefGoogle Scholar
Robinson, P. A. 1986 a J. Plasma Phys. 36, 63.Google Scholar
Robinson, P. A. 1986 b Aust. J. Phys. 39, 57.Google Scholar
Shkarofsky, I. P. 1966 Phys. Fluids, 9, 561.CrossRefGoogle Scholar
Shkarofsky, I. P. 1986 J. Plasma Phys. 35, 319.Google Scholar
Wong, H. K., Wu, C. S., Ke, F. J., Schneider, R. S. & Ziebell, L. F. 1982 J. Plasma Phys. 28, 503.Google Scholar
Wu, C. S. & Lee, L. C. 1979 Astrophys. J. 230, 621.CrossRefGoogle Scholar
Wu, C. S., Zhou, G. C. & Gaffey, J. D. 1985 Phys. Fluids, 28, 846.CrossRefGoogle Scholar
Ziebell, L. F. & Dillenburg, D. 1983 a Phys. Fluids, 26, 80.CrossRefGoogle Scholar
Ziebell, L. F. & Dillenburg, D. 1983 b Rev. Bras. Fís. 13, 703.Google Scholar
Ziebell, L. F. & Granata, G. 1986 Phys. Fluids, 29, 3730.CrossRefGoogle Scholar