Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-24T02:04:57.310Z Has data issue: false hasContentIssue false

Electron acoustic super solitary waves in a magnetized plasma

Published online by Cambridge University Press:  27 July 2018

T. Kamalam*
Affiliation:
Indian Institute of Geomagnetism, Navi Mumbai 410218, India
S. V. Steffy
Affiliation:
Indian Institute of Geomagnetism, Navi Mumbai 410218, India
S. S. Ghosh
Affiliation:
Indian Institute of Geomagnetism, Navi Mumbai 410218, India
*
Email address for correspondence: [email protected]

Abstract

An electron acoustic super solitary wave has been derived using the Sagdeev pseudopotential technique for a four component magnetized plasma consisting of the beam and bulk fluid electrons and two ions with Maxwell Boltzmann distributions. This is the first theoretical report of a super solitary wave in a magnetized plasma which has no direct association with the singularity of the pseudopotential. It shows a narrow and spiky subwell near the low potential which causes the lateral inversion of the wiggle for the bipolar electric field vis-á-vis the unmagnetized plasma. An analytical formalism was developed to identify these novel kinds of super solitary waves and their transition processes have been characterized. It was observed that the super solitary wave is directly influenced by the singularity of the pseudopotential lying in the vicinity of the solution. The first ever prediction of the electron acoustic super solitary wave raises the possibility of its application to the interpretation of the satellite observations of the electrostatic field data.

Type
Research Article
Copyright
© Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baluku, T. K., Hellberg, M. A. & Verheest, F. 2010 New light on ion acoustic solitary waves in a plasma with two-temperature electrons. Europhys. Lett. 91 (1), 15001.Google Scholar
Buti, B. 1980 Nonlinear electron-acoustic waves in a multi-species plasma. J. Plasma Phys. 24 (1), 169180.Google Scholar
Cattell, C. A., Dombeck, J., Wygant, J. R., Hudson, M. K., Mozer, F. S., Temerin, M. A., Peterson, W. K., Kletzing, C. A., Russell, C. T. & Pfaff, R. F. 1999 Comparisons of polar satellite observations of solitary wave velocities in the plasma sheet boundary and the high altitude cusp to those in the auroral zone. Geophys. Res. Lett. 26 (3), 425428.Google Scholar
Das, S. S. & Bujarbarua, S. 1988 Electron acoustic double layer in a current-carrying magnetized plasma. Planet. Space Sci. 36 (10), 10091013.Google Scholar
Devanandhan, S., Singh, S. V. & Lakhina, G. S. 2011 Electron acoustic solitary waves with kappa-distributed electrons. Phys. Scr. 84 (2), 025507.Google Scholar
Dubinov, A. E. 2009 On a widespread inaccuracy in defining the mach number of solitons in a plasma. Plasma Phys. Rep. 35 (11), 991.Google Scholar
Dubinov, A. E. & Kolotkov, D. Y. 2012a Interpretation of ion-acoustic solitons of unusual form in experiments in sf6-ar plasma. High Energy Chem. 46 (6), 349353.Google Scholar
Dubinov, A. E. & Kolotkov, D. Y. 2012b Ion-acoustic super solitary waves in dusty multispecies plasmas. IEEE Trans. Plasma Sci. 40 (5), 14291433.Google Scholar
Dubinov, A. E. & Kolotkov, D. Y. 2012c Ion-acoustic supersolitons in plasma. Plasma Phys. Rep. 38 (11), 909912.Google Scholar
Dubinov, A. E. & Kolotkov, D. Y. 2018 Above the weak nonlinearity: super-nonlinear waves in astrophysical and laboratory plasmas. Rev. Mod. Plasma Phys. 2 (1), 2.Google Scholar
Dubinov, A. E., Kolotkov, D. Y. & Sazonkin, M. A. 2012 Supernonlinear waves in plasma. Plasma Phys. Rep. 38 (10), 833844.Google Scholar
Ergun, R. E., Carlson, C. W., McFadden, J. P., Mozer, F. S., Delory, G. T., Peria, W., Chaston, C. C., Temerin, M., Roth, I., Muschietti, L. et al. 1998 Fast satellite observations of large-amplitude solitary structures. Geophys. Res. Lett. 25 (12), 20412044.Google Scholar
Ghosh, S. S., Ghosh, K. K. & Iyengar, A. N. S. 1996 Large mach number ion acoustic rarefactive solitary waves for a two electron temperature warm ion plasma. Phys. Plasmas 3 (11), 39393946.Google Scholar
Ghosh, S. S. & Iyengar, A. N. S. 1997 Anomalous width variations for ion acoustic rarefactive solitary waves in a warm ion plasma with two electron temperatures. Phys. Plasmas 4 (9), 32043210.Google Scholar
Ghosh, S. S., Pickett, J. S., Lakhina, G. S., Winningham, J. D., Lavraud, B. & Décréau, P. M. E. 2008 Parametric analysis of positive amplitude electron acoustic solitary waves in a magnetized plasma and its application to boundary layers. J. Geophys. Res. 113 (A6).Google Scholar
Ghosh, S. S. & Sekar Iyengar, A. N. 2002 Anomalous width variation for rarefactive ion acoustic solitary waves in the presence of warm multi-ions. J. Plasma Phys. 67 (4), 223233.Google Scholar
Hellberg, M. A., Baluku, T. K., Verheest, F. & Kourakis, I. 2013 Dust-acoustic supersolitons in a three-species dusty plasma with kappa distributions. J. Plasma Phys. 79 (6), 10391043.Google Scholar
Kalra, G. L. & Kumar, S. 2006 Effect of he++ ions on the propagation of low-frequency magnetohydrodynamic waves in the magnetosheath. J. Geophys. Res. 111 (A11), a11226.Google Scholar
Maharaj, S. K., Bharuthram, R., Singh, S. V. & Lakhina, G. S. 2013 Existence domains of dust-acoustic solitons and supersolitons. Phys. Plasmas 20 (8), 083705.Google Scholar
Mohan, M. & Buti, B. 1980 Electron-acoustic solitons in current-carrying magnetized plasmas. J. Plasma Phys. 22 (9), 873.Google Scholar
Olivier, C. P., Verheest, F. & Hereman, W. A. 2018 Collision properties of overtaking supersolitons with small amplitudes. Phys. Plasmas 25 (3), 032309.Google Scholar
Olivier, C. P., Verheest, F. & Maharaj, S. K. 2017 Small-amplitude supersolitons near supercritical plasma compositions. J. Plasma Phys. 83 (4), 905830403.Google Scholar
Pickett, J. S., Chen, L.-J., Kahler, S. W., Santolík, O., Gurnett, D. A., Tsurutani, B. T. & Balogh, A. 2004 Isolated electrostatic structures observed throughout the cluster orbit: relationship to magnetic field strength. Ann. Geophys. 22 (7), 25152523.Google Scholar
Rufai, O. R. 2015 Auroral electrostatic solitons and supersolitons in a magnetized nonthermal plasma. Phys. Plasmas 22 (5), 052309.Google Scholar
Rufai, O. R., Bharuthram, R., Singh, S. V. & Lakhina, G. S. 2014 Ion acoustic solitons and supersolitons in a magnetized plasma with nonthermal hot electrons and boltzmann cool electrons. Phys. Plasmas 21 (8), 082304.Google Scholar
Rufai, O. R., Bharuthram, R., Singh, S. V. & Lakhina, G. S. 2015 Effect of excess superthermal hot electrons on finite amplitude ion-acoustic solitons and supersolitons in a magnetized auroral plasma. Phys. Plasmas 22 (10), 102305.Google Scholar
Rufai, O. R., Bharuthram, R., Singh, S. V. & Lakhina, G. S. 2016 Obliquely propagating ion-acoustic solitons and supersolitons in four-component auroral plasmas. Adv. Space Res. 57 (3), 813820.Google Scholar
Singh, S. V. & Lakhina, G. S. 2015 Ion-acoustic supersolitons in the presence of non-thermal electrons. Commun. Nonlinear Sci. Numer. Simul. 23 (1), 274281.Google Scholar
Steffy, S. V. & Ghosh, S. S. 2017 Existence domain of the compressive ion acoustic super solitary wave in a two electron temperature warm multi-ion plasma. Phys. Plasmas 24 (10), 102111.Google Scholar
Steffy, S. V. & Ghosh, S. S. 2018 Phase portrait analysis of super solitary waves and flat top solutions. Phys. Plasmas 25 (6), 062302.Google Scholar
Sultana, S., Kourakis, I. & Hellberg, M. A. 2012 Oblique propagation of arbitrary amplitude electron acoustic solitary waves in magnetized kappa-distributed plasmas. Plasma Phys. Control. Fusion 54 (10), 105016.Google Scholar
Treumann, R. A. & Sagdeev, R. Z.2005 The astrophysical relevance of space plasma physics.Google Scholar
Varghese, S. S. & Ghosh, S. S. 2016 Transitional properties of supersolitons in a two electron temperature warm multi-ion plasma. Phys. Plasmas 23 (8), 082304.Google Scholar
Verheest, F. 2009 Oblique propagation of solitary electrostatic waves in multispecies plasmas. J. Phys. A 42 (28), 285501.Google Scholar
Verheest, F. & Hellberg, M. A. 2015 Electrostatic supersolitons and double layers at the acoustic speed. Phys. Plasmas 22 (1), 012301.Google Scholar
Verheest, F. & Hellberg, M. A. 2017 Oblique propagation of solitary electrostatic waves in magnetized plasmas with cold ions and nonthermal electrons. Phys. Plasmas 24 (2), 022306.Google Scholar
Verheest, F., Hellberg, M. A. & Kourakis, I. 2013a Dust-ion-acoustic supersolitons in dusty plasmas with nonthermal electrons. Phys. Rev. E 87, 043107.Google Scholar
Verheest, F., Hellberg, M. A. & Kourakis, I. 2013b Electrostatic supersolitons in three-species plasmas. Phys. Plasmas 20 (1), 012302.Google Scholar
Verheest, F., Hellberg, M. A. & Kourakis, I. 2013c Ion-acoustic supersolitons in plasmas with two-temperature electrons: Boltzmann and kappa distributions. Phys. Plasmas 20 (8), 082309.Google Scholar
Washimi, H. & Taniuti, T. 1966 Propagation of ion-acoustic solitary waves of small amplitude. Phys. Rev. Lett. 17, 996998.Google Scholar
Wei, R. & Chen, Y. 2005 Nonlinear lower hybrid waves in two-ion-species plasma. Phys. Scr. 71 (6), 648.Google Scholar
Yinhua, C., Wei, L. & Yu, M. Y. 2000 Nonlinear dust kinetic alfvén waves. Phys. Rev. E 61, 809812.Google Scholar
Yu, M. Y. 1978 Lower hybrid solitary waves. J. Math. Phys. 19 (4), 816818.Google Scholar