Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T00:28:16.618Z Has data issue: false hasContentIssue false

Electron acoustic double layers in a magnetized plasma in the presence of superthermal particles

Published online by Cambridge University Press:  21 June 2019

D. Dutta*
Affiliation:
Physics Department, Gauhati University, Guwahati, 781014, India Centre of Plasma Physics-Institute for Plasma Research, Nazirakhat, Sonapur, 782402, India
K. S. Goswami
Affiliation:
Centre of Plasma Physics-Institute for Plasma Research, Nazirakhat, Sonapur, 782402, India
*
Email address for correspondence: [email protected]

Abstract

An analytical study of the small amplitude electron acoustic double layers in a magnetized plasma consisting of superthermal electrons and ions along with cold fluid electrons is discussed. The dispersion relation allows electron acoustic waves with the frequency within electron and ion gyro-frequency in the modelled plasma. In the process of study of the nonlinear structures, the Sagdeev pseudo-potential method for small amplitude regions is employed. The existence domains for the double layers are investigated in terms of the Mach numbers of the structures and the temperature ratios of the species for different ratios of their concentration. The effects of the compositional parameters on the nature and size of the double layers are also explored and it is observed that the plasma can support both compressive and rarefactive double layers depending on the values of those parameters and the Mach numbers.

Type
Research Article
Copyright
© Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agapitov, O. V., Krasnoselskikh, V., Mozer, F. S., Artemyeva, V. & Volokitin, A. S. 2015 Generation of nonlinear electric field bursts in the outer radiation belt through the parametric decay of whistlerwaves. Geophys. Res. Lett. 42 (10), 37153722.Google Scholar
Alfvén, H. 1958 On the theory of magnetic storms and aurorae. Tellus 10 (1), 104116.Google Scholar
Bale, S. D. & Mozer, F. S. 2007 Measurement of large parallel and perpendicular electric fields on electron spatial scales in the terrestrial bow shock. Phys. Rev. Lett. 98 (20), 98101.Google Scholar
Baluku, T. K., Hellberg, M. A., Kourakis, I. & Saini, N. S. 2010 Dust ion acoustic solitons in a plasma with kappa-distributed electrons. Phys. Plasmas 17 (5), 053702.Google Scholar
Bujarbarua, S. & Nambu, M. 1983 Auroral kilometric radiation induced by double layers. J. Phys. Soc. Japan 52 (7), 22852288.Google Scholar
Buti, B., Mohan, M. & Shukla, P. K. 1980 Exact electron-acoustic solitary waves. J. Plasma Phys. 23 (02), 341.Google Scholar
Dillard, C. S., Vasko, I. Y., Mozer, F. S., Agapitov, O. V. & Bonnell, J. W. 2018 Electron-acoustic solitary waves in the Earth’s inner magnetosphere. Phys. Plasmas 25 (2), 022905.Google Scholar
Dutta, D. & Goswami, K. S. 2019 Dust ion acoustic double layer in the presence of superthermal electrons. Indian J. Phys. 93 (2), 257265.Google Scholar
Fernandes, P. A., Larsen, B. A., Thomsen, M. F., Skoug, R. M., Reeves, G. D., Denton, M. H., Friedel, R. H. W., Funsten, H. O., Goldstein, J., Henderson, M. G. et al. 2017 The plasma environment inside geostationary orbit: a Van Allen Probes HOPE survey. J. Geophys. Res. Space Phys. 122 (9), 92079227.Google Scholar
Frank, L. A. & Ackerson, K. L. 1979 Several recent findings concerning the dynamics of the Earth’s magnetotail. Space Sci. Rev. 23 (3), 265276.Google Scholar
Goswami, K. S. & Bujarbarua, S. 1987 Weak electron acoustic double layers in a multicomponent plasma. Pramana 28 (4), 399408.Google Scholar
Goswami, K. S., Kalita, M. K. & Bujarbarua, S. 1986 Theory of small amplitude electron acoustic double layers. Plasma Phys. Control. Fusion 28 (1B), 289297.Google Scholar
Guha, S. & Dwivedi, C. B. 1984 Linear and nonlinear propagation of electron-acoustic waves in a multi-species plasma. J. Plasmas Phys. 32 (2), 283290.Google Scholar
Gurnett, D. A., Frank, L. A. & Lepping, R. P. 1976 Plasma waves in the distant magnetotail. J. Geophys. Res. 81 (34), 6059.Google Scholar
Jacobsen, C. & Carlqvist, P. 1964 Solar flares caused by circuit interruptions. Icarus 3 (3), 270272.Google Scholar
Kamalam, T., Steffy, S. V. & Ghosh, S. S. 2018 Electron acoustic super solitary waves in a magnetized plasma. J. Plasma Phys. 84 (04), 905840406.Google Scholar
Lashmore-Da Vies, C. N. & Martin, T. J. 1973 Electrostatic instabilities driven by an electric currentperpendicular to a magnetic field. Nucl. Fusion 13 (2), 193203.Google Scholar
Maksimovic, M., Pierrard, V. & Lemaire, J. F. 1997 A kinetic model of the solar wind with Kappa distribution functions in the corona. Astron. Astrophys. 324, 725734.Google Scholar
Marsch, E. 2008 Beam-driven electron acoustic waves upstream of the Earth’s bow shock. J. Geophys. Res. 90 (A7), 6327.Google Scholar
Mohan, M. & Buti, B. 1980 Electron-acoustic solitons in current-carrying magnetized plasmas. Plasma Phys. 22 (9), 873878.Google Scholar
Mozer, F. S., Bale, S. D., Bonnell, J. W., Chaston, C. C., Roth, I. & Wygant, J. 2013 Megavolt parallel potentials arising from double-layer streams in the earth’s outer radiation belt. Phys. Rev. Lett. 111 (23), 15.Google Scholar
Pierrard, V. & Lazar, M. 2010 Kappa distributions: theory and applications in space plasmas. Solar Phys. 267 (1), 153174.Google Scholar
Pizzella, G. & Frank, L. A. 1971 Energy spectrums for proton (200 ev ${\leqslant}$ E ${\leqslant}$ 1 Mev) Intensities in the outer radiation zone. J. Geophys. Res. 76 (1), 8891.Google Scholar
Pottelette, R., Berthomier, M. & Pickett, J. 2014 Radiation in the neighbourhood of a double layer. Ann. Geophys. 32 (6), 677687.Google Scholar
Temerin, M., Cerny, K., Lotko, W. & Mozer, F. S. 1982 Observations of double layers and solitary waves in the auroral plasma. Phys. Rev. Lett. 48 (17), 11751179.Google Scholar
Vasyliunas, V. M. 1968 Low-energy electrons on the day side of the magnetosphere. J. Geophys. Res. 73 (23), 75197523.Google Scholar
Verheest, F., Cattaert, T., Hellberg, M. A. & Mace, R. L. 2006 On the existence of ion-acoustic double layers in two-electron temperature plasmas. Phys. Plasmas 13 (4), 042301.Google Scholar
Verheest, F. & Hellberg, M. A. 2010 Compressive and rarefactive solitary waves in nonthermal two-component plasmas. Phys. Plasmas 17 (10), 102312.Google Scholar
Verheest, F., Hellberg, M. A. & Kourakis, I. 2013 Dust-ion-acoustic supersolitons in dusty plasmas with nonthermal electrons. Phys. Rev. E - Statistical, Nonlinear, and Soft Matter Physics 87 (4), 043107.Google Scholar
Yu, M. Y. & Shukla, P. K. 1983 Linear and nonlinear modified electron-acoustic waves. J. Plasma Phys. 29 (1983), 409413.Google Scholar