Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-29T13:57:20.905Z Has data issue: false hasContentIssue false

Electromagnetic waves in self-gravitating, strongly coupled magnetized degenerate plasma

Published online by Cambridge University Press:  17 November 2011

A. A. MAMUN
Affiliation:
Department of Physics, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh ([email protected])
P. K. SHUKLA
Affiliation:
International Centre for Advanced Studies in Physical Sciences, Faculty of Physics & Astronomy, Ruhr-Universität Bochum, D-44780 Bochum, Germany Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093, USA
D. A. MENDIS
Affiliation:
Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093, USA

Abstract

The linear propagation of the low-frequency (compared to the electron gyrofrequency) electromagnetic (EM) waves in a self-gravitating, strongly coupled magnetized plasma with ultra-relativistic degenerate electron fluid is investigated. It is found that the dispersion properties of the EM waves and stability criteria for such a degenerate plasma are significantly modified by the effects of the ultra-relativistic degenerate electron pressure, strong co-relation among extremely dense ion fluid, and the direction of the EM wave propagation relative to the ambient magnetic field direction. The relevance of our investigation to stability of white dwarf stars is briefly discussed. It is particularly seen here that the cores of such stars are stable for the class of gravito-electrodynamic waves that are analyzed for the characteristic ranges of relevant physical parameters.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berkovsky, M. A. 1992 Phys. Lett. A 166, 365.CrossRefGoogle Scholar
Chandrasekhar, S. 1931a Phil. Mag. 11, 591.CrossRefGoogle Scholar
Chandrasekhar, S. 1931b Astrophys. J. 74, 81.CrossRefGoogle Scholar
Chandrasekhar, S. 1935 MNRAS 170, 405.Google Scholar
Chandrasekhar, S. 1964 Phys. Rev. Lett. 12, 114.CrossRefGoogle Scholar
Chandrasekhar, S. and Tooper, R. F. 1964 Astrophys. J. 139, 1396.CrossRefGoogle Scholar
Durisen, R. H. 1973 Astrophys. J. 183, 205.CrossRefGoogle Scholar
Gatewood, G. D. and Gatewood, C. V. 1978 Astrophys. J. 225, 191.CrossRefGoogle Scholar
Ichimaru, S., Iyetomi, H. and Tanaka, S. 1987 Phys. Rep. 149, 91.CrossRefGoogle Scholar
Ichimaru, S. and Tanaka, S. 1986 Phys. Rev. Lett. 56, 2815.CrossRefGoogle Scholar
Khan, S. A. and Saleem, H. 2009 Phys. Plasmas 16, 052109.CrossRefGoogle Scholar
Koester, D. 2002 Astron. Astrophys. Rev. 11, 33.CrossRefGoogle Scholar
Libert, J. 1980 Ann. Rev. Astron. Astrophys. 18, 363.CrossRefGoogle Scholar
Mamun, A. A. and Shukla, P. K. 2010a Phys. Lett. A 324, 4238.CrossRefGoogle Scholar
Mamun, A. A. and Shukla, P. K. 2010b Phys. Plasmas 17, 104504.CrossRefGoogle Scholar
Mendonça, J. T. 2010 Phys. Rev. A 81, 023421.CrossRefGoogle Scholar
Mendonça, J. T. 2011 Phys. Plasmas 18, 062101.CrossRefGoogle Scholar
Musielak, Z. E. 1987 Astrophys. J. 322, 234.CrossRefGoogle Scholar
Musielak, Z. E., Noble, M., Porter, J. G. and Winget, D. E. 2003 Astrophys. J. 593, 481.CrossRefGoogle Scholar
Nambu, M. and Nitta, H. 2002 Phys. Lett. A 300, 82.CrossRefGoogle Scholar
Shukla, P. K. 2010 Phys. Lett. A 374, 3656.CrossRefGoogle Scholar
Shukla, P. K. and Eliasson, B. 2011 Rev. Mod. Phys. 83, 885.CrossRefGoogle Scholar
Shukla, P. K., Mendis, D. A. and Krasheninnikov, S. I. 2011 J. Plasma Phys. 77, 571.CrossRefGoogle Scholar
Slattery, W. L., Doolen, G. D. and DeWitt, H. E. 1980 Phys. Rev. A 21, 2087.CrossRefGoogle Scholar