Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T00:54:08.998Z Has data issue: false hasContentIssue false

Electromagnetic instabilities in non-uniform anisotropic plasmas

Published online by Cambridge University Press:  13 March 2009

B. Butt
Affiliation:
Space Science Division, Ames Research Center NASA, Moffett Field, California 94035
G. S. Lakhina
Affiliation:
Physical Research Laboratory, Ahmedabad, India

Abstract

Electromagnetic waves propagating perpendicular to an external magnetic field in a non-uniform anisotropic plasma can become unstable due to the excitation of either resonant ion instability or resonant electron instability. The former instability can exist in the absence of both the temperture anisotropy and the temperature gradients, whereas for the excitation of resonant electron instability the presence of at least one of them is necessary. An off-resonance drift cyclotron instability can also get excited if the temperature gradients are much stronger than the magnetic field gradients.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1973

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bhadra, D. K. 1968 Phys. Rev. 171, 188.Google Scholar
Burlaga, L. F. 1968 Solar Phys. 4, 67.Google Scholar
Burlaga, L. F. 1971 Proc. Asilomar Solar Wind Conference.Google Scholar
Buti, B. 1973 Phys. Fluids (To be published.)Google Scholar
Buti, B. & Lakhina, G. S. 1973 Phys. Rev. A 7, 319.CrossRefGoogle Scholar
Chamberlain, J. W. 1963 J. Geophys. Res. 68, 5667.Google Scholar
Davidson, R. C. & Wu, C. S. 1970 Phys. Fluids, 13, 1407.CrossRefGoogle Scholar
Hamasaki, S. 1968 Phys. Fluids, 11, 2724.CrossRefGoogle Scholar
Hudson, P. D. 1970 Planet. Space Sci. 18, 1611.CrossRefGoogle Scholar
Hundhausen, A. J. 1970 Rev. Geophys. and Space Phys. 8, 729.Google Scholar
Kadomtsev, B. B. 1963 J. Nucl. Energy C 5, 31.Google Scholar
Krall, N. A. & Rosenbluth, M. N. 1963 Phys. Fluids, 6, 254.Google Scholar
Krall, N. A. & Rosenbluth, M. N. 1965 Phys. Fluids, 8, 1488.Google Scholar
Krall, N. A. 1968 Advances in Plasma Physics, vol. 1, p. 153. Interscionce.Google Scholar
Krall, N. A. & Tidman, D. A. 1969 J. Geophys. Res. 74, 6439.Google Scholar
Mikhailovsrii, A. B. 1967 Reviews of Plasma Physics, vol. 3, p. 159. New York: Consultants Bureau.CrossRefGoogle Scholar
Montgomery, M. D., Bame, S. J. & Hundhausen, A. J. 1968 J. Geophys. Res. 73, 4999.CrossRefGoogle Scholar
Pillp, W. & Volk, H. 1971 J. Plasma Phys. 6, 1.Google Scholar
Siscoe, G. L., Davis, L., Coleman, P. J., Smith, E. J. & Jones, D. E. 1968 J. Geophys. Res. 73, 61.CrossRefGoogle Scholar
Stix, T. H. 1962 Theory of Plasma Waves. McGraw-Hill.Google Scholar
Tserkovnikov, V. 1957 Soviet Phys. 5, 58.Google Scholar
Unti, T. W. J., Atkinson, G., Wu, C. S. & Neugebauer, M. 1972 J. Geophys. Res. 77, 2250.CrossRefGoogle Scholar
Wu, C. S. 1971a J. Geophys. Res. 76, 4454.Google Scholar
Wu, C. S. 1971b J. Geophys. Res. 76, 6961.CrossRefGoogle Scholar