Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-09T22:31:39.499Z Has data issue: false hasContentIssue false

Electromagnetic energy transport by tearing fluctuations in a self-organized reversed-field pinch plasma

Published online by Cambridge University Press:  11 May 2022

Derek J. Thuecks*
Affiliation:
Department of Physics, Washington College, 300 Washington Avenue, Chestertown, MD 21620, USA
Karsten J. McCollam
Affiliation:
Department of Physics, University of Wisconsin–Madison, 1150 University Avenue, Madison, WI 53706, USA
*
Email address for correspondence: [email protected]

Abstract

Fluctuation measurements reveal the outward electromagnetic energy flux needed to drive the dynamo electromotive force supporting magnetic self-organization in a reversed-field pinch plasma. The radial Poynting flux due to tearing mode fluctuations is measured with an insertable probe during magnetic relaxation. This flux corresponds to transient power levels much larger than the input power and comparable to the global equilibrium magnetic energy transient loss rate. The probe measurements of this flux are roughly as predicted by a simple Poynting's theorem model upon substitution of equilibrium measurement data.

Type
Letter
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Antoni, V., Merlin, D., Ortolani, S. & Paccagnella, R. 1986 MHD stability analysis of force-free reversed field pinch configurations. Nucl. Fusion 26 (12), 17111717.CrossRefGoogle Scholar
Bhattacharjee, A. & Hameiri, E. 1986 Self-consistent dynamolike activity in turbulent plasmas. Phys. Rev. Lett. 57 (2), 206209.CrossRefGoogle ScholarPubMed
Biewer, T., Forest, C., Anderson, J., Fiksel, G., Hudson, B., Prager, S., Sarff, J., Wright, J., Brower, D., Ding, W., et al. 2003 Electron heat transport measured in a stochastic magnetic field. Phys. Rev. Lett. 91 (4), 045004.CrossRefGoogle Scholar
Bonfiglio, D., Cappello, S. & Escande, D.F. 2005 Dominant electrostatic nature of the reversed field pinch dynamo. Phys. Rev. Lett. 94, 145001.CrossRefGoogle ScholarPubMed
Brunsell, P.R., Maejima, Y., Yagi, Y., Hirano, Y. & Shimada, T. 1994 Edge plasma fluctuations and transport in a reversed-field pinch. Phys. Plasmas 1, 22972307.CrossRefGoogle Scholar
den Hartog, D.J., Chapman, J.T., Craig, D., Fiksel, G., Fontana, P.W., Prager, S.C. & Sarff, J.S. 1999 Measurement of core velocity fluctuations and the dynamo in a reversed-field pinch. Phys. Plasmas 6, 18131821.CrossRefGoogle Scholar
Dexter, R.N., Kerst, D.W., Lovell, T.W., Prager, S.C. & Sprott, J.C. 1991 The madison symmetric torus. Fusion Technol. 19, 131.CrossRefGoogle Scholar
Fiksel, G., Almagri, A.F., Chapman, B.E., Mirnov, V.V., Ren, Y., Sarff, J.S. & Terry, P.W. 2009 Mass-dependent ion heating during magnetic reconnection in a laboratory plasma. Phys. Rev. Lett. 103 (14), 145002.CrossRefGoogle Scholar
Fiksel, G., Bengtson, R.D., Cekic, M., den Hartog, D., Prager, S.C., Pribyl, P., Sarff, J., Sovinec, C., Stoneking, M.R., Taylor, R.J., et al. 1996 Measurement of magnetic fluctuation-induced heat transport in tokamaks and RFP. Plasma Phys. Control. Fusion 38, A213A225.CrossRefGoogle Scholar
Fimognari, P.J., Almagri, A.F., Anderson, J.K., Demers, D.R., Sarff, J.S., Tangri, V. & Waksman, J. 2010 Port hole perturbations to the magnetic field in MST. Plasma Phys. Control. Fusion 52, 095002.CrossRefGoogle Scholar
Fontana, P.W., den Hartog, D.J., Fiksel, G. & Prager, S.C. 2000 Spectroscopic observation of fluctuation-induced dynamo in the edge of the reversed-field pinch. Phys. Rev. Lett. 85 (3), 566569.CrossRefGoogle ScholarPubMed
Ho, Y.L. & Craddock, G.G. 1991 Nonlinear dynamics of field maintenance and quasiperiodic relaxation in reversed-field pinches. Phys. Fluids B 3 (3), 721734.CrossRefGoogle Scholar
Ji, H. 1999 Turbulent dynamos and magnetic helicity. Phys. Rev. Lett. 83, 31983201.CrossRefGoogle Scholar
Ji, H., Almagri, A.F., Prager, S.C. & Sarff, J.S. 1994 Time-resolved observation of discrete and continuous magnetohydrodynamic dynamo in the reversed-field pinch edge. Phys. Rev. Lett. 73, 668671.CrossRefGoogle ScholarPubMed
Ji, H., Prager, S.C., Almagri, A.F., Sarff, J.S., Yagi, Y., Hirano, Y., Hattori, K. & Toyama, H. 1996 Measurement of the dynamo effect in a plasma. Phys. Plasmas 3, 19351942.CrossRefGoogle Scholar
Krause, F. & Rädler, K.-H. 1980 Mean-Field Magnetohydrodynamics and Dynamo Theory. Akademie-Verlag.Google Scholar
Kuritsyn, A., Fiksel, G., Almagri, A.F., Brower, D.L., Ding, W.X., Miller, M.C., Mirnov, V.V., Prager, S.C. & Sarff, J.S. 2009 Measurements of the momentum and current transport from tearing instability in the Madison Symmetric Torus reversed-field pinch. Phys. Plasmas 16 (5), 055903.CrossRefGoogle Scholar
Marrelli, L., Martin, P., Puiatti, M.E., Sarff, J.S., Chapman, B.E., Drake, J.R., Escande, D.F. & Masamune, S. 2021 The reversed field pinch. Nucl. Fusion 61, 023001.CrossRefGoogle Scholar
Moffatt, H.K. 1978 Magnetic Field Generation in Electrically Conducting Fluids. Cambridge University Press.Google Scholar
Nebel, R.A., Caramana, E.J. & Schnack, D.D. 1989 The role of $m=0$ modal components in the reversed-field-pinch dynamo effect in the single fluid magnetohydrodynamics model. Phys. Fluids B 1 (8), 16711674.CrossRefGoogle Scholar
Ortolani, S. & Schnack, D. 1993 Magnetohydrodynamics of Plasma Relaxation. World Scientific.CrossRefGoogle Scholar
Parke, E., Hartog, D.J.D., Morton, L.A., Stephens, H.D., Kasten, C.P., Reusch, J.A., Harris, W.H., Borchardt, M.T., Falkowski, A.F., Hurst, N.C., et al. 2012 Improvements to the calibration of the MST Thomson scattering diagnostic. Rev. Sci. Instrum. 83, 10E324.CrossRefGoogle Scholar
Rädler, K.-H. 2007 Mean-Field Dynamo Theory: Early Ideas and Today's Problems, pp. 5572. Springer.Google Scholar
Rempel, T.D., Almagri, A.F., Assadi, S., den Hartog, D.J., Hokin, S.A., Prager, S.C., Sarff, J.S., Shen, W., Sidikman, K.L., Spragins, C.W., et al. 1992 Turbulent transport in the Madison Symmetric Torus reversed-field pinch. Phys. Fluids B 4, 21362141.CrossRefGoogle Scholar
Rempel, T.D., Spragins, C.W., Prager, S.C., Assadi, S., den Hartog, D.J. & Hokin, S. 1991 Edge electrostatic fluctuations and transport in a reversed-field pinch. Phys. Rev. Lett. 67, 14381441.CrossRefGoogle Scholar
Ren, Y., Almagri, A.F., Fiksel, G., Prager, S.C., Sarff, J.S. & Terry, P.W. 2011 Experimental observation of anisotropic magnetic turbulence in a reversed field pinch plasma. Phys. Rev. Lett. 107 (19), 195002.CrossRefGoogle Scholar
Sarff, J.S., Assadi, S., Almagri, A.F., Cekic, M., den Hartog, D.J., Fiksel, G., Hokin, S.A., Ji, H., Prager, S.C., Shen, W., et al. 1993 Nonlinear coupling of tearing fluctuations in the Madison Symmetric Torus. Phys. Fluids B 5, 25402545.CrossRefGoogle Scholar
Sauppe, J.P. & Sovinec, C.R. 2017 Extended MHD modeling of tearing-driven magnetic relaxation. Phys. Plasmas 24, 056107.CrossRefGoogle Scholar
Schnack, D.D., Barnes, D.C., Mikic, Z., Harned, D.S. & Caramana, E.J. 1987 Semi-implicit magnetohydrodynamic calculations. J. Comput. Phys. 70 (2), 330354.CrossRefGoogle Scholar
Serianni, G., Murari, A., Fiksel, G., Antoni, V., Bagatin, M., Desideri, D., Martines, E. & Tramontin, L. 2001 Magnetic fluctuations and energy transport in RFX. Plasma Phys. Control. Fusion 43 (7), 919927.CrossRefGoogle Scholar
Sovinec, C.R. 1995 Magnetohydrodynamic simulations of noninductive helicity injection in the reversed-field pinch and tokamak. PhD thesis, The University of Wisconsin–Madison.CrossRefGoogle Scholar
Stone, D.R. 2013 Magnetic relaxation during oscillating field current drive in a reversed field pinch. PhD thesis, The University of Wisconsin–Madison.Google Scholar
Taylor, J.B. 1974 Relaxation of toroidal plasma and generation of reverse magnetic fields. Phys. Rev. Lett. 33, 11391141.CrossRefGoogle Scholar
Thuecks, D.J., Almagri, A.F., Sarff, J.S. & Terry, P.W. 2017 Evidence for drift waves in the turbulence of reversed field pinch plasmas. Phys. Plasmas 24 (2), 022309.CrossRefGoogle Scholar
Tsui, H. 1988 Magnetic helicity transport and the reversed field pinch. Nucl. Fusion 28 (9), 15431554.CrossRefGoogle Scholar