Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-26T07:01:20.134Z Has data issue: false hasContentIssue false

Electro-acoustic shock structures in dusty plasmas

Published online by Cambridge University Press:  01 September 2014

A. A. Mamun*
Affiliation:
Department of Physics, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
*
Email address for correspondence: [email protected]

Abstract

Two types of electro-acoustic shock structures, namely dust-ion-acoustic (DIA) and dust-acoustic (DA) shock structures, formed in two different kind of dusty plasma systems have been theoretically investigated. The sources of dissipation, which are responsible for the formation of DIA and DA shock structures in these dusty plasma systems, are identified. The conditions for the formation of these shock structures and their new basic features are pinpointed. The implications of the results in experimental observations are also discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barkan, A., D'Angelo, N. and Merlino, R. L. 1996 Planet. Space Sci. 44, 239.Google Scholar
Barkan, A., Merlino, R. L. and D'Angelo, N. 1995 Phys. Plasmas 2, 3563.Google Scholar
Berbri, A. and Tribeche, M. 2009 J. Plasma Phys. 75, 587.Google Scholar
Eliasson, B. and Shukla, P. K. 2004a Phys. Rev. E 69, 067401.Google Scholar
Eliasson, B. and Shukla, P. K. 2004b Phys. Rev. Lett. 93, 045001.Google Scholar
Eliasson, B. and Shukla, P. K. 2006 Phys. Rep. 422, 225.Google Scholar
Fortov, V. E.et al. 1996 Phys. Rev. E. 54, R2236.CrossRefGoogle Scholar
Heinrich, J., Kim, S. and Merlino, R. 2009 Phys. Rev. Lett. 103, 115002.CrossRefGoogle Scholar
Horányi, M. and Walch, M. 1998 J. Geophys. Res. 103 8575.Google Scholar
Kaw, P. K. and Sen, A. 1998 Phys. Plasmas 5, 3552.Google Scholar
Luo, Q. Z., D'Angelo, N. and Merlino, R. L. 1999 Phys. Plasmas 7, 3457.Google Scholar
Mamun, A. A. and Cairns, R. A. 2009 Phys. Rev. E 79, R055401.Google Scholar
Mamun, A. A., Eliasson, B. and Shukla, P. K. 2004 Phys. Lett. A 332, 412.CrossRefGoogle Scholar
Mamun, A. A. and Shukla, P. K. 2002 IEEE Trans. Plasma Sci. 30, 720.Google Scholar
Mamun, A. A. and Shukla, P. K. 2009 Europhys. Lett. 87, 25001.Google Scholar
Mamun, A. A. and Shukla, P. K. 2010 Phys. Lett. A 374, 472.Google Scholar
Merlino, R. L. and Goree, J. 2004 Phys. Today 57 (7), 32.Google Scholar
Mohideen, U.et al. 1998 Phys. Rev. Lett. 81, 349.CrossRefGoogle Scholar
Nakamura, Y., Bailung, H. and Shukla, P. K. 1999 Phys. Rev. Lett. 83, 1602.Google Scholar
Schamel, H. 1972 Plasma Phys. 14, 905.Google Scholar
Schamel, H. 1973 J. Plasma Phys. 9, 377.Google Scholar
Shukla, P. K. and Mamun, A. A. 2001 IEEE Trans. Plasma Sci. 29, 221.Google Scholar
Shukla, P. K. and Silin, V. P. 1992 Phys. Scr. 45, 508.CrossRefGoogle Scholar
Rao, N. N., Shukla, P. K. and Yu, M. Y. 1990 Planet. Space Sci. 38, 541.CrossRefGoogle Scholar
Rosenberg, M. and Mendis, D. A. 1995 IEEE Trans. Plasma Sci. 23, 177.CrossRefGoogle Scholar