Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-04T03:05:42.975Z Has data issue: false hasContentIssue false

Electrical conductivity for radio-frequency fields in strongly magnetized plasmas with density fluctuations

Published online by Cambridge University Press:  13 March 2009

Yu. S. Sayasov
Affiliation:
Department of Physics, University of Fribourg, CH-1700 Fribourg, Switzerland
Ch. P. Ritz
Affiliation:
Department of Physics, University of Fribourg, CH-1700 Fribourg, Switzerland

Abstract

A general investigation of the electrical conductivity for radio-frequency (RF) fields in strongly magnetized plasmas with small-scale density fluctuations is performed within the cold plasma hydrodynamical approximation. It is shown that in such plasmas an RF phenomenon similar to the Bohm diffusion exists: the presence of stochastic RF electric field in a turbulent plasma can lead to a strong enhancement of the RF currents flowing in the direction of the applied electric field components transverse to the magnetic field. The appearance of these turbulent drift currents favours energy transfer from the RF fields to the plasma and thus leads to their stronger damping. This effect allows us to interpret quantitatively the enhanced damping of the magnetosonic waves observed in several experiments. The magnetized radially inhomogeneous cylindrical plasmas in these experiments are characterized by density fluctuations due to drift instabilities. The theory has also a number of other applications; an example is given of the whistlers damped by the ionospheric density fluctuations.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Al'pert, Ja. L. 1972 Propagation of Electromagnetic Waves and the Ionosphere. Consultants Bureau.Google Scholar
Blackwell, B. D. & Cross, R. C. 1979 J. Plasma Phys. 22, 499.CrossRefGoogle Scholar
Budden, K. G. 1959 J. Res. N.B.S., 63D, 135.Google Scholar
Ginzburg, V. L. 1961 Propagation of Electromagnetic Waves in Plasma. Gordon and Breach.Google Scholar
Ginzburg, V. L. & Ruhadze, A. A. 1975 Waves in a Magneto-active Plasma (in Russian). Nauka.Google Scholar
Hoegger, B. A., Ritz, Ch., Schneider, H. & Vaucher, B. G. 1980 Phys. Lett. 76 A, 393.CrossRefGoogle Scholar
Hoegger, B. A., Ritz, Ch., Schneider, H. & Vaucher, B. G. 1981 Phys. Lett. 84 A, 250.CrossRefGoogle Scholar
Kadomtsev, B. B. 1965 Plasma Turbulence. Academic.Google Scholar
Krall, N. A. & Trivelpiece, A. W. 1973 Principles of Plasma Physics. McGraw-Hill.CrossRefGoogle Scholar
Krämer, M. 1975 Plasma Phys. 17, 373.CrossRefGoogle Scholar
Lammers, B. 1974 Dissertation, Ruhr-Universität Bochum.Google Scholar
Landau, L. D. & Lifshitz, E. M. 1960 Electrodynamics of Continuons Media. Addison-Wesley.Google Scholar
Räuchle, E. 1972 Report IPF-72–8, Institut für Plasmaforschung, Universität Stuttgart.Google Scholar
Rawer, K. & Suchy, K. 1967 Encyclopedia of Physics, vol. 49/2. Springer.Google Scholar
Ritz, Ch., Hoegger, B. A., Sayasov, Yu. S., Schneider, H. & Vaucher, B. G. 1982 Helv. Phys. Acta, 55, 354.Google Scholar
Sayasov, Yu. S. 1981 Phys. Lett. 82 A, 337.CrossRefGoogle Scholar
Schneider, H., Hoegger, B. A., Ritz, Ch., Vaucher, B. G. & Tran, T. M. 1980 Helv. Phys. Acta, 53, 40.Google Scholar
Ter Haar, D. 1958 Introduction to the Physics of Many-Body Systems, Appendix B. Interscience.Google Scholar
Timofeev, A. V. & Shvilkin, B. N. 1976 Soviet Phys. Uspekhi, 19, 149.CrossRefGoogle Scholar
Vaucher, B. G., Hoegger, B. A., Ritz, Ch., Sayasov, Yu. S. & Schneider, H. 1983 Plasma Phys. 25, 331.CrossRefGoogle Scholar
Yoshikawa, S. & Rose, D. J. 1962 Phys. Fluids, 5, 334.CrossRefGoogle Scholar