Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T00:37:50.107Z Has data issue: false hasContentIssue false

Electrical a.c. conductivity for hot isotropic collisional plasmas

Published online by Cambridge University Press:  13 March 2009

Helmut Hebenstreit
Affiliation:
Institute for Theoretical Physics, University of Düsseldorf, Federal Republic of Germany
Kurt Suchy
Affiliation:
Institute for Theoretical Physics, University of Düsseldorf, Federal Republic of Germany

Abstract

With an infinite system of balance equations, derived from the Boltzmann equation, conductivity expressions are obtained in the form of three-term recurrence relations leading to continued fractions. Without collisions, only Landau damping causes attenuation. Its modification by collisions is illustrated for some simple collision models.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abramowitz, M. & Stegun, I. A. 1970 Handbook of Mathematical Functions. Dover.Google Scholar
Clemmow, P. C. & Dougherty, J. P. 1969 Electrodynamics of Particles and Plasmas. Addison-Wesley.Google Scholar
Desloge, E. A. 1964 Amer. J. Phys. 32, 733.CrossRefGoogle Scholar
Fried, B. D. & Conte, S. D. 1961 The Plasma Dispersion Function. Academic.Google Scholar
Grad, H. 1949 Comm. Pure Appl. Math. 2, 325.CrossRefGoogle Scholar
Hebenstreit, H. 1983 a Proceedings of 16th International Conference on Phenomena in Ionized Gases, Düsseldorf, vol. 5, p. 654.Google Scholar
Hebenstreit, H. 1983 b Report T2/8301. Institute of Theoretical Physics, University of Düsseldorf.Google Scholar
Jones, W. B. & Thron, W. J. 1980 Continued Fractions. Addison-Wesley.Google Scholar
Kalman, G. 1975 Plasma Physics (ed. DeWitt, C. & Peyraud, J.), p. 349. Gordon & Breach.Google Scholar
McCabe, J. H. 1984 J. Plasma Phys. 32, 479.CrossRefGoogle Scholar
Peratt, A. L. 1984 J. Math. Phys. 25, 466.CrossRefGoogle Scholar
Roos, B. W. 1969 Analytic Functions and Distributions in Physics and Engineering. Wiley.Google Scholar
Shkarofsky, I. P., Johnston, T. W. & Bachynski, M. P. 1966 The Particle Kinetics of Plasmas. Addison-Wesley.Google Scholar
Suchy, K. 1984 Handbuch der Physik (ed. Flügge, S.), vol. 49 (7), p. 57. Springer.Google Scholar
Wall, H. S. 1948 Analytic Theory of Continued Fractions. van Nostrand (reprinted 1967 by Chelsea).Google Scholar
Weinert, U. 1979 J. Math. Phys. 20, 2339.CrossRefGoogle Scholar
Weinert, U. & Suchy, K. 1977 Z. Naturforsch. 32a, 390.CrossRefGoogle Scholar