Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T08:44:50.187Z Has data issue: false hasContentIssue false

Effects of the magnetic field gradient on the wall power deposition of Hall thrusters

Published online by Cambridge University Press:  23 March 2017

Yongjie Ding
Affiliation:
Harbin Institute of Technology, Harbin, People’s Republic of China
Peng Li
Affiliation:
Harbin Institute of Technology, Harbin, People’s Republic of China
Xu Zhang
Affiliation:
Harbin Institute of Technology, Harbin, People’s Republic of China
Liqiu Wei*
Affiliation:
Harbin Institute of Technology, Harbin, People’s Republic of China
Hezhi Sun
Affiliation:
Harbin Institute of Technology, Harbin, People’s Republic of China
Wuji Peng
Affiliation:
Harbin Institute of Technology, Harbin, People’s Republic of China
Daren Yu
Affiliation:
Harbin Institute of Technology, Harbin, People’s Republic of China
*
Email addresses for correspondence: [email protected], [email protected]

Abstract

The effect of the magnetic field gradient in the discharge channel of a Hall thruster on the ionization of the neutral gas and power deposition on the wall is studied through adopting the 2D-3V particle-in-cell (PIC) and Monte Carlo collisions (MCC) model. The research shows that by gradually increasing the magnetic field gradient while keeping the maximum magnetic intensity at the channel exit and the anode position unchanged, the ionization region moves towards the channel exit and then a second ionization region appears near the anode region. Meanwhile, power deposition on the walls decreases initially and then increases. To avoid power deposition on the walls produced by electrons and ions which are ionized in the second ionization region, the anode position is moved towards the channel exit as the magnetic field gradient is increased; when the anode position remains at the zero magnetic field position, power deposition on the walls decreases, which can effectively reduce the temperature and thermal load of the discharge channel.

Type
Research Article
Copyright
© Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beal, B., Gallimore, A. & Hargus, W.2002 Preliminary plume characterization of a low-power Hall thruster cluster. In Proceedings of 8th AIAA/ASME/SAE/ASEE Jt. Propuls. Conf. Exhib., Indianapolis, Indiana. AIAA 2002-4251.Google Scholar
Cheng, S. Y. & Martinez-Sanchez, M. 2008 Hybrid particle-in-cell erosion modeling of two Hall thrusters. J. Propul. Power 24, 987998.Google Scholar
Conversano, R. W., Goebel, D. M., Hofer, R. R., Matlock, T. S. & Wirz, R. E.2013 Magnetically shielded miniature Hall thruster: development and initial testing. In Proceedings of 33rd Int. Electr. Propuls. Conf. IEPC 2013-201.Google Scholar
Conversano, R. W., Goebel, D. M., Hofer, R. R., Matlock, T. S. & Wirz, R. E. 2015 Development and initial testing of a magnetically shielded miniature Hall Thruster. IEEE Trans. Plasma Sci. 43, 103117.Google Scholar
Conversano, R. W., Goebel, D. M., Mikellides, I. G., Hofer, R. R., Matlock, T. S. & Wirz, R. E.2014 Magnetically shielded miniature Hall thruster: performance assessment and status update. In Proc. 50th AIAA/ASME/SAE/ASEE Jt. Propuls. Conference Exhib., Cleveland, OH. AIAA-2014-3896.Google Scholar
Ding, Y. J., Peng, W. J., Wei, L. Q., Sun, G. S., Li, H. & Yu, D. R. 2016 Computer simulations of Hall thrusters without wall losses designed using two permanent magnetic rings. J. Phys. D: Appl. Phys. 49, 465001.Google Scholar
Dorf, L., Raitses, Y. & Fisch, N. J. 2006 Effect of magnetic field profile on the anode fall in a Hall-effect thruster discharge. Phys. Plasmas 13, 057104.Google Scholar
Garrigues, L., Hagelaar, G. J. M., Bareilles, J., Boniface, C. & Boeuf, J. P. 2003 Model study of the influence of the magnetic field configuration on the performance and lifetime of a Hall thruster. Phys. Plasmas 10, 48864892.Google Scholar
Garrigues, L., Mazouffre, S., Hénaux, C., Vilamot, R., Rossi, A., Harribey, D., Bourgeois, G., Vaudolon, J. & Zurbach, S.2013 Design and first test campaign results with a new flexible magnetic circuit for a Hall thruster. In Proc. 33rd Int. Electr. Propuls. Conf., Washington DC, USA. IEPC 2013-250.Google Scholar
Hargus, W. A. & Charles, C. S. 2008 Near exit plane velocity field of a 200 W Hall thruster. J. Propul. Power 24, 127133.Google Scholar
Hofer, R. R., Jankovsky, R. S. & Gallimore, A. D. 2006 High-specific impulse Hall thrusters, part 1: influence of current density and magnetic field. J. Propul. Power 22, 721731.CrossRefGoogle Scholar
Hruby, V., Monheiser, J., Pote, B., Kolencik, J., Freeman, C. & Rostler, P.1999 Development of low power Hall thrusters. In Proc. 30th AIAA/ASME/SAE/ASEE Jt. Propuls. Conf. Exhib., Norfolk, VA. AIAA-99-3534.Google Scholar
Ito, T., Gascon, N., Crawford, W. S. & Cappelli, M. A.2006 Further development of a micro Hall thruster. In Proc. 42nd AIAA/ASME/SAE/ASEE Jt. Propuls. Conf. Exhib., Sacramento, CA. AIAA-2006-4495.Google Scholar
Ito, T., Gascon, N., Crawford, W. S. & Cappelli, M. A. 2007 Experimental characterization of a micro-Hall thruster. J. Propul. Power 23, 10681074.Google Scholar
Jacobson, D. & Jankovsky, R.1998 Test results of a 200 W class Hall thruster. In Proc. 34th AIAA/ASME/SAE/ASEE Jt. Propuls. Conf. Exhib., Cleveland, OH. AIAA-98-3792.Google Scholar
Li, H., Ning, Z. & Yu, D. 2013 Hall thruster with grooved walls. J. Appl. Phys. 113, 083303.Google Scholar
Li, H., Zhang, F., Liu, H. & Yu, D. 2010 Characteristics of electron near-wall transport under two-dimensional dynamic sheath in a Hall effect thruster. Phys. Plasmas 17, 074505.Google Scholar
Liu, H., Chen, P., Zhao, Y. & Yu, D. 2015 Particle-in-cell simulation for different magnetic mirror effects on the plasma distribution in a cusped field thruster. Chin. Phys. B 24, 085202.Google Scholar
Liu, H., Wu, B., Yu, D., Cao, Y. & Duan, P. 2010 Particle-in-cell simulation of a Hall thruster. J. Phys. D: Appl. Phys. 43, 165202.CrossRefGoogle Scholar
Mazouffre, S., Tsikata, S. & Vaudolon, J.2014a Development and characterization of a wall-less Hall thruster. In Proc. 50th AIAA/ASME/SAE/ASEE Jt. Propuls. Conf. Exhib., Cleveland, OH. AIAA 2014-3513.Google Scholar
Mazouffre, S., Tsikata, S. & Vaudolon, J. 2014b Development and experimental characterization of a wall-less Hall thruster. J. Appl. Phys. 116, 243302.CrossRefGoogle Scholar
Smirnov, A., Raitses, Y. & Fisch, J. 2002 Parametric investigation of miniaturized cylindrical and annular Hall thrusters. J. Appl. Phys. 92, 56735679.CrossRefGoogle Scholar
Vaudolon, J., Mazouffre, S., Hénaux, C., Harribey, D. & Rossi, A. 2015 Optimization of a wall-less Hall thruster. Appl. Phys. Lett. 107, 174103.Google Scholar
Yu, D., Li, H., Wu, Z., Ning, Z. & Yan, G. 2009 Experimental and theoretical study on effects of magnetic field topology on near wall conductivity in a Hall thruster. Phys. Plasmas 16, 103504.CrossRefGoogle Scholar
Yu, D., Song, M., Li, H., Liu, H. & Han, K. 2012a The influence of magnetic field strength in ionization stage on ion transport between two stages of a double stage Hall thruster. Phys. Plasmas 19, 113505.Google Scholar
Yu, D., Song, M., Liu, H., Ding, Y. J. & Li, H. 2012b Particle-in-cell simulation of a double stage Hall thruster. Phys. Plasmas 19, 033503.Google Scholar