Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T13:47:06.000Z Has data issue: false hasContentIssue false

The effects of finite Larmor radius on the perturbation flow mixing of a collisionless plasma

Published online by Cambridge University Press:  13 March 2009

Shigeki Morioka
Affiliation:
Space Sciences Division, Ames Research Center, NASA, Moffett Field, California 94035
John R. Spreiter
Affiliation:
Department of Applied Mechanics, Stanford University, Stanford, California 94305

Abstract

The Chew—Goldberger—Low theory of a collisionless plasma, modified to include the effect of finite Larmor radius of the ion and the electron, is applied to a linearized problem of two-dimensional steady flow. The zeroth-order terms in the Larmor radius expansions of the velocity distribution functions of the ion and the electron are assumed to be anisotropic Maxwellian. The spatial development of a given velocity profile is investigated for flows with either crossed or aligned magnetic fields, and for various values of Mach number, Alfvén Mach number, and anisotropic pressure ratios in the main flow.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1970

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abraham-Shrauner, B. 1968 Quasilinear Fluid Equations for the Firehose Instability, Washington University, Department of Electrical Engineering. Technical Report No. 68–10.Google Scholar
Chew, C. F., Goldberger, M. L. & Low, F. E. 1956 Proc. Roy. Soc. Lond. A 236, 435.Google Scholar
Davidson, R. C. & Völk, H. J. 1968 Phys. Fluid 11, 2259.CrossRefGoogle Scholar
Frieman, E., Davidson, R. & Langdon, B. 1966 Phys. Fluid 9, 1475.CrossRefGoogle Scholar
Kennel, C. F. & Greene, J. M. 1966 Ann. Phys. 38, 63.CrossRefGoogle Scholar
Kennel, C. F. & Sagdeev, R. Z. 1967 a J. Geophys. Res. 72, 3303.CrossRefGoogle Scholar
Kennel, C. F. & Sagdeev, R. Z. 1967 b J. Geophys. Res. 72, 3327.CrossRefGoogle Scholar
Macmahon, A. 1965 Phys. Fluid 8, 1840.CrossRefGoogle Scholar
Sagdeev, R. Z. 1966 Rev. Plasma Phys. 4, 23.Google Scholar
Spreiter, J. R., Alksne, A. Y. & Summers, A. L. 1968 Physics of the Magnetosphere, p. 301. Ed. Carovillano, R. L. et al. Dordrect-Holland: D. Reidel.CrossRefGoogle Scholar
Thompson, W. B. 1961 Rep. Frog. Phys. (The Physical Society, London), 24, 363.CrossRefGoogle Scholar
Yajima, N. 1966 Progr. Theoret. Phys. 36, 1.CrossRefGoogle Scholar