Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-23T10:24:47.008Z Has data issue: false hasContentIssue false

The effects of electron energy distribution function on the plasma sheath structure in the presence of charged nanoparticles

Published online by Cambridge University Press:  17 March 2020

H. Khalilpour*
Affiliation:
Physics Department, Payame Noor University, 19395-4697, Tehran, Iran
G. Foroutan
Affiliation:
Physics Department, Faculty of Science, Sahand University of Technology, 51335-1996, Tabriz, Iran
*
Email address for correspondence: [email protected]

Abstract

The effects of the electron energy distribution function (EEDF) on the structure of a dusty plasma sheath are investigated. Here, it is assumed that the electrons obey a Druyvesteyn-type distribution with a parameter $x$ controlling the shape of the EEDF. The Druyvesteyn-like distribution tends to a Maxwellian distribution as $x$ varies from 2 to 1. Using the orbital motion limited theory, the incident electron current on the dust is evaluated for a given $x$. The results of numerical simulations are compared with those of a Maxwellian distribution. It was found that the sheath dynamics depends strongly on the magnitude of $x$. The sheath thickness increases monotonically with increasing $x$. However, the absolute dust charge decreases and, as a result, the accelerating ion drag force is weakened and thus the dust number density is enhanced. For a plasma with a Druyvesteyn-like distribution, the Bohm speed is a function of $x$ and increases with increasing $x$.

Type
Research Article
Copyright
© Cambridge University Press 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adhikary, N. C., Bailung, H., Pal, A. R., Chutia, J. & Nakamura, Y. 2007 Observation of sheath modification in laboratory dusty plasma. Phys. Plasmas 14, 103705.CrossRefGoogle Scholar
Amemiya, H. 1997 Sheath formation criterion and ion flux for non-Maxwellian plasma. J. Phys. Soc. Japan 66, 13351338.CrossRefGoogle Scholar
Amemiya, H. 1998 Sheath formation criterion and ion flux for a non-Maxwellian plasma containing negative ions. J. Phys. Soc. Japan 67, 19551962.CrossRefGoogle Scholar
Amemiya, H. 2012 Plasma dispersion for Druyvesteyn type velocity distribution. J. Phys. Soc. Japan 81, 074501.CrossRefGoogle Scholar
Barnes, M. S., Keller, J. H., Forster, J. C., ONeill, J. A. & Coultas, D. K. 1992 Transport of dust particles in glow-discharge plasmas. Phys. Rev. Lett. 68, 313316.CrossRefGoogle ScholarPubMed
Behringer, K. & Fantz, U. 1994 Spectroscopic diagnostics of glow discharge plasmas with non-Maxwellian electron energy distributions. J. Phys. D: Appl. Phys. 27, 21282135.CrossRefGoogle Scholar
Birdsall, C. K. 1991 Particle-in-cell charged-particle simulations, plus Monte Carlo collisions with neutral atoms, PIC-MCC. IEEE Trans. Plasma Sci. 19, 6585.Google Scholar
Borgohain, D. R. & Saharia, K. 2018a Behavior of collisional sheath in electronegative plasma with $q$-nonextensive electron distribution. Phys. Plasmas 25, 032122.CrossRefGoogle Scholar
Borgohain, D. R. & Saharia, K. 2018b Characteristics of electronegative plasma sheath with $q$-nonextensive electron distribution. Plasma Phys. Rep. 44, 137144.CrossRefGoogle Scholar
Daugherty, J. E. & Graves, D. B. 1995 Derivation and experimental verification of a particulate transport model for a glow discharge. J. Appl. Phys. 78, 22792287.CrossRefGoogle Scholar
Davoudabadi, M. & Mashayek, F. 2005 Dust particle dynamics in magnetized plasma sheath. J. Phys. D: Appl. Phys. 12, 073505.Google Scholar
Denysenko, I. B., Xu, S., Long, J. D., Rutkevych, P. P., Azarenkov, N. A. & Ostrikov, K. 2004a Inductively coupled $\text{Ar}/\text{CH}_{4}/\text{H}_{2}$ plasmas for low-temperature deposition of ordered carbon nanostructures. J. Appl. Phys. 95, 27132724.CrossRefGoogle Scholar
Denysenko, I., Yu, M. Y., Ostrikov, K., Azarenkov, N. A. & Stenflo, L. 2004b A kinetic model for an argon plasma containing dust grains. Phys. Plasmas 11, 49594967.CrossRefGoogle Scholar
Denysenko, I. B., Kersten, H. & Azarenkov, N. A. 2016 Electron energy distribution function, effective electron temperature, and dust charge in the temporal afterglow of a plasma. Phys. Plasmas 23, 053704.CrossRefGoogle Scholar
Diomede, P., Longo, S. & Capitelli, M. 2005 Vibrational excitation and negative ion production in radio frequency parallel plate $\text{H}_{2}$ plasmas. Eur. Phys. J. D 33, 243251.CrossRefGoogle Scholar
Driouch, I. & Chatei, H. 2017 Effect of $q$-nonextensive distribution of electrons on the sheath in dusty plasma. Eur. Phys. J. D 71, 9.CrossRefGoogle Scholar
Driouch, I., Chatei, H. & Bojaddaini, M. E. 2015 Numerical study of the sheath in magnetized dusty plasma with two-temperature electrons. J. Plasma Phys. 11, 905810104.Google Scholar
Druyvesteyn, M. J. & Penning, F. M. 1940 The mechanism of electrical discharges in gases of low pressure. Rev. Mod. Phys. 12, 87178.CrossRefGoogle Scholar
Foroutan, G. 2010 Fluid simulation of an electrostatic plasma sheath with two species of positive ions and charged nanoparticles. Phys. Plasmas 17, 123711.CrossRefGoogle Scholar
Foroutan, G. & Akhoundi, A. 2012a Numerical study of an electrostatic plasma sheath containing two species of charged dust particles. J. Appl. Phys. 112, 073301.CrossRefGoogle Scholar
Foroutan, G. & Akhoundi, A. 2012b Simulation study of the sheath region of a processing plasma with two-temperature electrons and charged nanoparticles. Phys. Lett. A 376, 22442251.CrossRefGoogle Scholar
Foroutan, G., Mehdipour, H. & Zahed, H. 2009 Simulation study of the magnetized sheath of a dusty plasma. Phys. Plasmas 16, 103703.CrossRefGoogle Scholar
Franklin, R. N. 2003 The plasmasheath boundary region. J. Phys. D: Appl. Phys. 36, 309320.CrossRefGoogle Scholar
Franklin, R. N. 2005 The active magnetized plasma-sheath over a wide range of collisionality. J. Phys. D: Appl. Phys. 38, 34123416.CrossRefGoogle Scholar
Ghani, O. E., Driouch, I. & Chatei, H. 2019 Effects of non-extensive electrons on the sheath of dusty plasmas with variable dust charge. Contrib. Plasma Phys. 21, e201900030.Google Scholar
Godyak, V. A. & Sternberg, N. 1990 Smooth plasma-sheath transition in a hydrodynamic model. IEEE Trans. Plasma Sci. 18, 159168.Google Scholar
Gudmundsson, J. T. 2001 On the effect of the electron energy distribution on the plasma parameters of an argon discharge: a global (volume-averaged) model study. Plasma Sources Sci. Technol. 10, 7681.CrossRefGoogle Scholar
Gudmundsson, J. T., Kimura, T. & Leiberman, M. A. 1999 Experimental studies of $\text{O}_{2}/\text{Ar}$ plasma in a planar inductive discharge. Plasma Sources Sci. Technol. 8, 22.CrossRefGoogle Scholar
Gudmundsson, T., Marakhtanov, A. M., Patel, K. K., Gopinath, V. P. & Leiberman, M. A. 2000 Electronegativity of low-pressure high-density oxygen discharges. J. Phys. D: Appl. Phys. 34, 11001109.Google Scholar
Hagelaar, G. J. M.2016 Brief documentation of BOLSIG+ version 03/2016. Laboratoire Plasma et Conversion d.Energie (LAPLACE), Universite Paul Sabatier, 118, http://www.bolsig.laplace.univ-tlse.fr/wp-content/uploads/2016/03/bolsigdoc0316.pdf.Google Scholar
Hassouni, K., Grotjohn, T. A. & Gicquel, A. 1999 Self-consistent microwave field and plasma discharge simulations for a moderate pressure hydrogen discharge reactor. J. Appl. Phys. 86, 134151.CrossRefGoogle Scholar
Hatami, M. M. 2015 Nonextensive statistics and the sheath criterion in collisional plasmas. Phys. Plasmas 22, 013508.CrossRefGoogle Scholar
Jalilpour, P. & Foroutan, G. 2017 Simulation study of the photoemission effects in an electrostatic plasma sheath containing charged nanoparticles. Phys. Plasmas 24, 063513.CrossRefGoogle Scholar
Jalilpour, P. & Foroutan, G. 2018 The effects of secondary emission on the sheath structure in an electrostatic dusty plasma containing energetic electrons and charged nanoparticles. Phys. Plasmas 25, 033701.CrossRefGoogle Scholar
Khrapak, S. 2010 Floating potential of a small particle in a plasma: difference between Maxwellian and Druyvesteyn electron velocity distributions. Phys. Plasmas 17, 104502.CrossRefGoogle Scholar
Lee, D., Severn, G., Oksuz, L. & Hershkowitz, N. 2006 Laser-induced fluorescence measurements of argon ion velocities near the sheath boundary of an argon-xenon plasma. J. Phys. D: Appl. Phys. 39, 52305235.CrossRefGoogle Scholar
Lieberman, M. A. & Lichtenberg, A. J. 1994 Kinetic theory of discharges. In Principle of Plasma Discharges and Material Processing. Wiley.Google Scholar
Longo, S. & Diomede, P. 2009 Modeling of capacitively coupled RF plasmas in $\text{H}_{2}$. Plasma Process. Polym. 6, 370379.CrossRefGoogle Scholar
Loureiro, J. & Ferreira, C. M. 1986 Electron excitation rates and transport parameters in high-frequency $\text{N}_{2}$ discharges. J. Phys. D: Appl. Phys. 19, 17.CrossRefGoogle Scholar
Loureiro, J. & Ferreira, C. M. 1989 Electron and vibrational kinetics in the hydrogen positive column. J. Phys. D: Appl. Phys. 22, 67.CrossRefGoogle Scholar
Ma, J. X., Liu, J. Y. & Yu, M. Y. 1997 Fluid theory of the boundary of a dusty plasma. Phys. Rev. E 55, 46274633.Google Scholar
Nighan, W. 1970 Electron energy distributions and collision rates in electrically excited $\text{N}_{2}$, CO, and $\text{CO}_{2}$. Phys. Rev. A 2, 1989.CrossRefGoogle Scholar
Ou, J., Xiang, N., Gan, C. & Yang, J. 2013 Effect of two-temperature electrons distribution on an electrostatic plasma sheath. Phys. Plasmas 20, 063502.CrossRefGoogle Scholar
Pandey, B. P., Samarian, A. & Vladimirov, S. V. 2007 Dust in the magnetized sheath. Phys. Plasmas 14, 093703.CrossRefGoogle Scholar
Resendes, D. P., Sorasio, G. & Shukla, P. K. 2002 Dynamics of dust particles in plasma sheaths. Phys. Plasmas 9 (7), 29882997.CrossRefGoogle Scholar
Riemann, K. U. 1990 Theory of the collisional presheath in an oblique magnetic field. IEEE Trans. Plasma Sci. 18, 159168.Google Scholar
Riemann, K. U. 1991 The bohm criterion and sheath formation. J. Phys. D: Appl. Phys. 24, 493518.CrossRefGoogle Scholar
Riemann, K. U., Seebacher, J., Tskhakaya, D. D. & Kuhn, S. 2005 The plasma–sheath matching problem. Plasma Phys. Control. Fusion 47, 19491970.CrossRefGoogle Scholar
Rockwood, S. D. 1973 Elastic and inelastic cross sections for electron-Hg scattering from Hg transport data. Phys. Rev. A 8, 23482358.CrossRefGoogle Scholar
Safa, N. N., Ghomi, H. & Niknam, A. R. 2014 Effect of the $q$-nonextensive electron velocity distribution on a magnetized plasma sheath. Phys. Plasmas 21, 082111.CrossRefGoogle Scholar
Samarian, A. A., James, B. W., Vladimirov, S. V. & Cramer, N. F. 2001 Self-excited vertical oscillations in an RF-discharge dusty plasma. Phys. Rev. E 64, 025402.Google Scholar
Samarian, A. A. & Vladimirov, S. V. 2003 Charge of a macroscopic particle in a plasma sheath. Phys. Rev. E 67, 066404.Google Scholar
Samarian, A. A., Vladimirov, S. V. & James, B. W. 2005 Dust particle alignments and confinement in a radio frequency sheath. Phys. Plasmas 12, 022103.CrossRefGoogle Scholar
Sheridan, T. E. 2001 Solution of the plasma-sheath equation with a cool Maxwellian ion source. Phys. Plasmas 8, 42404245.CrossRefGoogle Scholar
Sheridan, T. E. & Goree, J. 1991 Collisional plasma sheath model. Phys. Fluids B 3, 27962804.CrossRefGoogle Scholar
Shukla, P. K. & Mamun, A. A. 2002 Dust charging processes. In Introduction to Dusty Plasma Physics. IOP.CrossRefGoogle Scholar
Sternberg, N. & Godyak, V. A. 2003 On asymptotic matching and the sheath edge. IEEE Trans. Plasma Sci. 31, 665677.Google Scholar
Sutherland, W. 1893 The viscosity of gases and molecular force. Phil. Mag. 36, 507531.CrossRefGoogle Scholar
Takahashi, K., Charles, C., Boswell, R. W. & Fujiwara, T. 2011 Electron energy distribution of a current-free double layer: Druyvesteyn theory and experiments. Phys. Rev. Lett. 107, 038302.CrossRefGoogle ScholarPubMed
Tskhakaya, D. D., Shukla, P. K., Eliasson, B. & Kuhn, S. 2005 Theory of the plasma sheath in a magnetic field parallel to the wall. Phys. Plasmas 36, 103503.Google Scholar
Tsytovich, V. N., Vladimirov, S. V. & Benkadda, S. 1999 Dust-plasma sheath: a new dissipative self-organized structure. Phys. Plasmas 6, 29722975.CrossRefGoogle Scholar
Zhao, P., Liao, C., Lin, W., Chang, L. & Fu, H. 2011 Numerical studies of the high power microwave breakdown in gas using the fluid model with a modified electron energy distribution function. Phys. Plasmas 18, 102111.CrossRefGoogle Scholar