Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T14:15:35.710Z Has data issue: false hasContentIssue false

Effects of a non-monotonic safety factor on the particle transport and diffusion in the case of a reversed magnetic shear

Published online by Cambridge University Press:  30 April 2009

M. GHABBOURI
Affiliation:
Laboratory of Theoretical Physics, Faculty of Sciences Ain Chock, Casablanca, Morocco ([email protected])
D. SAIFAOUI
Affiliation:
Laboratory of Theoretical Physics, Faculty of Sciences Ain Chock, Casablanca, Morocco ([email protected])
A. BOULEZHAR
Affiliation:
Laboratory of Theoretical Physics, Faculty of Sciences Ain Chock, Casablanca, Morocco ([email protected])
A. DEZAIRI
Affiliation:
Laboratoire de Physique de la Matière Condensée, Faculté des Sciences Ben M'sik, B.P. 7955, Casablanca, Morocco
M. EL MOUDEN
Affiliation:
Laboratory of Theoretical Physics, Faculty of Sciences Ain Chock, Casablanca, Morocco ([email protected]) Institut Jean Lamour, CNRS–Nancy-Université–UPV-Metz, UMR 7198, Département P2M, Université Henri-Poincaré, Nancy I, B.P. 239, 54506 Vandoeuvre les Nancy cedex, France

Abstract

This work is based on a numerical study of particle transport and diffusion using ITER parameters. In particular, the effects of introducing a non-monotonic safety factor (NMSF) in the case of a reversed magnetic shear are shown. These results are compared with those found by using a monotonic safety factor (MSF). Double internal transport barriers are detected influencing the transport and diffusion of particles. The choices of the mode (m, n) and the m/n values play a dominant role for the particle diffusion, which leads to an improvement of the magnetic confinement.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Itoh, K., Itoh, S.-I. and Fukuyama, A. 1999 Transport and Structural Formation in Plasmas. Bristol: Institute of Physics of Publishing.Google Scholar
[2]Nagashima, Y. et al. 2006 Plasma Phys. Control. Fusion 48, A377.CrossRefGoogle Scholar
[3]El Mouden, M., Saifaoui, D., Dezairi, A., Zine, B. and Eddahbi, M. 2007 J. Plasma Phys. 73 (4), 439453.Google Scholar
[4]El Mouden, M., Saifaoui, D., Dezairi, A. and Imzi, H. 2005 Use of magnetic shear for the improvement of quality of confinement in the plasma of tokamak. FIZIKA A 14 (4), 277288.Google Scholar
[5]El Mouden, M., Saifaoui, D., Dezairi, A. and Imzi, H. 2004 Moroccan J. Condens. Matter 5 (2), 202208.Google Scholar
[6]El Mouden, M., Saifaoui, D., Dezairi, A., Zine, B., Eddahbi, M. and Rouak, A. 2007 The influence of magnetic reversed shear in the improvement of quality of confinement in the plasma of tokamak: comparison between TEXTOR & ITER. Moroccan J. Condens. Matter 9 (1), 2027.Google Scholar
[7]Tabet, R., Saifaoui, D., Dezairi, A. and Rouak, A. 1998 Eur. Phys. J. AP 4, 329.Google Scholar
[8]Marcus, F. A., Kroetz, T., Roberto, M., Caldas, I. L., Da Silva, E. C., Viana, R. L. and Guimaraes-Filho, Z. O. 2008 Chaotic transport in reversed shear tokamaks. Nucl. Fusion 48, 024018024026.Google Scholar
[9]Kamada, Y. 2000 Observations on the formation of transport barriers. Plasma Phys. Control. Fusion 42, A65A80.Google Scholar
[10]Antoni, V. et al. 2000 Electrostatic transportation reduction induced by flow shear modification in a reversed field pinch plasma. Plasma Phys. Control. Fusion 42, A271A276.CrossRefGoogle Scholar
[11]Oualyoudine, A., Saifaoui, D., Dezairi, A. and Rouak, A. 1997 J. Physique 7, 1045.Google Scholar
[12]Takenaga, H. et al. 1998 Determination of particle transport coefficients in reversed shear plasma of JT-60U. Plasma Phys. Control. Fusion 40, 183190.CrossRefGoogle Scholar