Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-07T20:02:35.787Z Has data issue: false hasContentIssue false

The effect of lower-hybrid waves on the propagation of hydromagnetic waves

Published online by Cambridge University Press:  13 March 2009

Hiromitsu Hamabata
Affiliation:
Department of Physics, Faculty of Science, Osaka City University, Osaka 558, Japan
Tomikazu Namikawa
Affiliation:
Department of Physics, Faculty of Science, Osaka City University, Osaka 558, Japan
Kazuhiro Mori
Affiliation:
Department of Physics, Faculty of Science, Osaka City University, Osaka 558, Japan

Abstract

Propagation characteristics of hydromagnetic waves in a magnetic plasma are investigated using the two-plasma fluid equations including the effect of lower-hybrid waves propagating perpendicularly to the magnetic field. The effect of lower-hybrid waves on the propagation of hydromagnetic waves is analysed in terms of phase speed, growth rate, refractive index, polarization and the amplitude relation between the density perturbation and the magnetic-field perturbation for the cases when hydromagnetic waves propagate in the plane whose normal is perpendicular to both the magnetic field and the propagation direction of lower-hybrid waves and in the plane perpendicular to the propagation direction of lower-hybrid waves. It is shown that hydromagnetic waves propagating at small angles to the propagation direction of lower-hybrid waves can be excited by the effect of lower-hybrid waves and the energy of excited waves propagates nearly parallel to the propagation direction of lower-hybrid waves.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bellan, P. M. & Porkolab, M. 1974 Phys. Fluids, 17, 1592.CrossRefGoogle Scholar
Briggs, R. J. & Parker, R. R. 1972 Phys. Rev. Lett. 29, 852.CrossRefGoogle Scholar
Davidson, R. C. & Gladd, N. T. 1975 Phys. Fluids, 18, 1327.CrossRefGoogle Scholar
Fisher, R. K. & Gould, R. W. 1971 Phys. Fluids, 14, 857.CrossRefGoogle Scholar
Gary, S. P. & Eastman, T. E. 1979 J. Geophys. Res. 84, 7378.CrossRefGoogle Scholar
Gurnett, D. A., Anderson, R. R., Turutani, B. T., Smith, E. J., Paschmann, G., Haerendel, G., Bame, S. J. & Russel, C. T. 1979 J. Geophys. Res. 84, 7043.CrossRefGoogle Scholar
Huba, J. D., Gladd, N. T. & Papadopoulos, K. 1978 J. Geophys. Res. 83, 5217.CrossRefGoogle Scholar
Huba, J. D. & Wu, C. S. 1976 Phys. Fluids, 19, 988.CrossRefGoogle Scholar
Kaw, P. K., Cheng, C. Z. & Chen, L. 1976 Princeton Plasma Physics Laboratory Report MATT-1305.Google Scholar
Krall, N. & Liewer, C. 1971 Phys. Rev. A 4, 2094.CrossRefGoogle Scholar
McKenzie, J. F. 1973 J. Fluid. Mech. 58, 709.CrossRefGoogle Scholar
Morales, G. J. & Lee, Y. C. 1975 Phys. Rev. Lett. 35, 930.CrossRefGoogle Scholar
Namikawa, T. & Hamabata, H. 1983 J. Plasma Phys. 29, 243.CrossRefGoogle Scholar
Ott, E. 1975 Phys. Fluids, 18, 566.CrossRefGoogle Scholar
Sanuki, H. & Schmidt, G. 1977 J. Phys. Soc. Jpn, 42, 664.CrossRefGoogle Scholar
Saxena, M. K. 1982 J. Plasma Phys. 28, 149.CrossRefGoogle Scholar
Shukla, P. K. & Mamedow, M. A. 1978 J. Plasma Phys. 19, 87.CrossRefGoogle Scholar
Soward, A. M. 1975 J. Fluid Mech. 69, 145.CrossRefGoogle Scholar
Spatschek, K. H., Shukla, P. K. & Yu, M. Y. 1977 J. Plasma Phys. 18, 165.CrossRefGoogle Scholar
Stix, T. H. 1962 The Theory of Plasma Waves. McGraw-Hill.Google Scholar
Stix, T. H. 1965 Phys. Rev. Lett. 15, 878.CrossRefGoogle Scholar
Tripathi, V. K., Grebogi, C. & Lui, C. S. 1977 University of Maryland Preprint 701 P001.Google Scholar
Yu, M. Y., Shukla, P. K. & Spatschek, K. H. 1978 J. Plasma Phys. 20, 189.CrossRefGoogle Scholar