Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T06:44:08.947Z Has data issue: false hasContentIssue false

Effect of finite spectral width on the modulational instability of Alfvén waves

Published online by Cambridge University Press:  13 March 2009

P. C. Roy
Affiliation:
Department of Mathematics, University of Chittagong, Bangladesh
J. C. Bhakta
Affiliation:
Department of Mathematics, University of Chittagong, Bangladesh

Abstract

The effect of finite spectral width on the modulational instability of Alfvén waves described by the derivative nonlinear Schrodinger equation is investigated using a method developed by Alber to derive a transport equation for the spectral density. The dispersion relation for a monochromatic wave is regained for a delta spectrum. It is shown that the growth rate and domain of modulational instability diminish as the spectral width increases for both the Gaussian and uniform spectrums.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alber, I. E. 1978 Proc. R. Soc. Lond. A 363, 525.Google Scholar
Anderson, D. & Lisak, M. 1983 Phys. Rev. A 27, 1396.Google Scholar
Bhakta, J. C. & Majumder, D. 1983 J. Plasma Phys. 30, 203.CrossRefGoogle Scholar
Benjamin, T. B. & Feir, J. E. 1967 J. Fluid Mech. 27, 417.CrossRefGoogle Scholar
Davidson, R. C. 1972 Methods in Nonlinear Plasma Theory. Academic.Google Scholar
Dysthe, K. B. & Das, K. P. 1981 J. Fluid Mech. 104, 483.CrossRefGoogle Scholar
Faddeyeva, V. N. & Terent'ev, N. M. 1961 Tables of Values of the Function w(z) = exp (— z 2) [1 + (2i/π) ∫xo exp (t 2) dt] for Complex Argument. Pergamon.Google Scholar
Hasimoto, H. & Ono, H. 1972 J. Phys. Soc. Japan 33, 805.CrossRefGoogle Scholar
Ichikawa, Y. H. & Watanabe, S. 1977 J. Phys. (Paris) Suppl. 12, C615.Google Scholar
Mio, K., Ogno, T., Minami, K. & Takeda, S. 1976 J. Phys. Soc. Japan 41, 265.CrossRefGoogle Scholar
Mjølhus, E. 1976 J. Plasma Phys. 16, 321.CrossRefGoogle Scholar
Mjølhus, E. 1978 J. Plasma Phys. 19, 437.CrossRefGoogle Scholar
Mjølhus, E. 1986 Physica Scripta 33, 442.CrossRefGoogle Scholar
Rogister, A. 1971 Phys. Fluids 14, 2733.CrossRefGoogle Scholar
Spatschek, K. H., Shukla, P. K. & Yu, M. Y. 1977 Nucl. Fusion 18, 290.Google Scholar
Tzoar, N. & Jain, M. 1981 Phys. Rev. A 23, 1266.CrossRefGoogle Scholar