Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-24T01:42:26.807Z Has data issue: false hasContentIssue false

Effect of external magnetic field on lane formation in driven pair-ion plasmas

Published online by Cambridge University Press:  08 March 2021

Swati Baruah*
Affiliation:
Kaziranga University, Jorhat, Assam785006, India
U. Sarma
Affiliation:
Kaziranga University, Jorhat, Assam785006, India
R. Ganesh
Affiliation:
Institute for Plasma Research, Bhat, Gandhinagar, Gujarat382428, India
*
Email address for correspondence: [email protected]

Abstract

Lane formation dynamics in externally driven pair-ion plasma (PIP) particles is studied in the presence of external magnetic field using Langevin dynamics (LD) simulation. The phase diagram obtained distinguishing the no-lane and lane states is systematically determined from a study of various Coulomb coupling parameter values. A peculiar lane formation-disintegration parameter space is identified; lane formation area extended to a wide range of Coulomb coupling parameter values is observed before disappearing to a mixed phase. The different phases are identified by calculating the order parameter. This and the critical parameters are calculated directly from LD simulation. The critical electric field strength value above which the lanes are formed distinctly is obtained, and it is observed that in the presence of the external magnetic field, the PIP system requires a higher value of the electric field strength to enter into the lane formation state than that in the absence of the magnetic field. We further find out the critical value of electric field frequency beyond which the system exhibits a transition back to the disordered state and this critical frequency is found as an increasing function of the electric field strength in the presence of an external magnetic field. The movement of the lanes is also observed in a direction perpendicular to that of the applied electric and magnetic field directions, which reveals the existence of the electric field drift in the system under study. We also use an oblique force field as the external driving force, both in the presence and absence of the external magnetic field. The application of this oblique force changes the orientation of the lane structures for different applied oblique angle values.

Type
Research Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

2001 Cumulative subject index. In Cumulative Author, Title and Subject Index Including Table of Contents, Volumes 1–19 (ed. C. Domb & J. L. Lebowitz), Phase Transitions and Critical Phenomena, vol. 20, pp. 41–201. Academic Press.Google Scholar
Aertsens, M. & Naudts, J. 1991 Field-induced percolation in a polarized lattice gas. J. Stat. Phys. 62 (3–4), 609630.CrossRefGoogle Scholar
Allen, M., Allen, M., Tildesley, D., Allen, T. & Tildesley, D. 1989 Computer Simulation of Liquids. Clarendon Press.Google Scholar
Ammelt, E., Schweng, D. & Purwins, H.-G. 1993 Spatio-temporal pattern formation in a lateral high-frequency glow discharge system. Phys. Lett. A 179 (4), 348354.CrossRefGoogle Scholar
Aranson, I. S. & Tsimring, L. S. 2006 Patterns and collective behavior in granular media: theoretical concepts. Rev. Mod. Phys. 78, 641692.CrossRefGoogle Scholar
Asseo, E. 2003 Pair plasma in pulsar magnetospheres. Plasma Phys. Control. Fusion 45 (6), 853867.CrossRefGoogle Scholar
Astrov, Y. A., Müller, I., Ammelt, E. & Purwins, H.-G. 1998 Zigzag destabilized spirals and targets. Phys. Rev. Lett. 80, 53415344.CrossRefGoogle Scholar
Baruah, S. & Das, N. 2010 The effect of magnetic field on the structure of Coulomb crystal in dusty plasma. Phys. Plasmas 17 (7), 073702.CrossRefGoogle Scholar
Baruah, S., Ganesh, R. & Avinash, K. 2015 A molecular dynamics study of phase transition in strongly coupled pair-ion plasmas. Phys. Plasmas 22 (8), 082116.CrossRefGoogle Scholar
Begelman, M. C., Blandford, R. D. & Rees, M. J. 1984 Theory of extragalactic radio sources. Rev. Mod. Phys. 56, 255351.CrossRefGoogle Scholar
Berman, R. H., Tetreault, D. J. & Dupree, T. H. 1985 Simulation of phase space hole growth and the development of intermittent plasma turbulence. Phys. Fluids 28 (1), 155176.CrossRefGoogle Scholar
Breazeal, W., Flynn, K. M. & Gwinn, E. G. 1995 Static and dynamic two-dimensional patterns in self-extinguishing discharge avalanches. Phys. Rev. E 52, 15031515.CrossRefGoogle ScholarPubMed
Cross, M. C. & Hohenberg, P. C. 1993 Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 8511112.CrossRefGoogle Scholar
Dzubiella, J., Hoffmann, G. P. & Löwen, H. 2002 Lane formation in colloidal mixtures driven by an external field. Phys. Rev. E 65, 021402.CrossRefGoogle ScholarPubMed
Feliciani, C., Murakami, H. & Nishinari, K. 2018 A universal function for capacity of bidirectional pedestrian streams: filling the gaps in the literature. PLoS One 13, e0208496.CrossRefGoogle ScholarPubMed
Hansen, J.-P. & McDonald, I. R. 1986 Theory of Simple Liquids, 2nd edn. Academic Press.Google Scholar
Helbing, D., Farkas, I. J. & Vicsek, T. 2000 Freezing by heating in a driven mesoscopic system. Phys. Rev. Lett. 84, 12401243.CrossRefGoogle Scholar
Ikeda, K. & Kim, K. 2017 Lane formation dynamics of oppositely self-driven binary particles: effects of density and finite system size. J. Phys. Soc. Japan 86 (4), 044004.CrossRefGoogle Scholar
Ikeda, M., Wada, H. & Hayakawa, H. 2012 Instabilities and turbulence-like dynamics in an oppositely driven binary particle mixture. Europhys. Lett. 99 (6), 68005.CrossRefGoogle Scholar
Iwamoto, N. 1993 Collective modes in nonrelativistic electron-positron plasmas. Phys. Rev. E 47, 604611.CrossRefGoogle ScholarPubMed
Kanakasabapathy, S. K. & Overzet, L. J. 1998 A coupled two-sheath simulation of RF bias at high electronegativities. Plasma Sources Sci. Technol. 7 (3), 289297.CrossRefGoogle Scholar
Katz, S., Lebowitz, J. L. & Spohn, H. 1983 Phase transitions in stationary nonequilibrium states of model lattice systems. Phys. Rev. B 28, 16551658.CrossRefGoogle Scholar
Klymko, K., Geissler, P. L. & Whitelam, S. 2016 Microscopic origin and macroscopic implications of lane formation in mixtures of oppositely driven particles. Phys. Rev. E 94, 022608.CrossRefGoogle ScholarPubMed
Kogler, F. & Klapp, S. 2015 Lane formation in a system of dipolar microswimmers. Europhys. Lett. 110, 116.CrossRefGoogle Scholar
Konopka, U., Samsonov, D., Ivlev, A. V., Goree, J., Steinberg, V. & Morfill, G. E. 2000 Rigid and differential plasma crystal rotation induced by magnetic fields. Phys. Rev. E 61, 18901898.CrossRefGoogle ScholarPubMed
Leunissen, M., Christova, C., Hynninen, A.-P., Royall, C., Campbell, A., Imhof, A., Dijkstra, M., Roij, R. & van Blaaderen, A. 2005 a Ionic colloidal crystals of oppositely charged particles. Nature 437, 235–40.CrossRefGoogle ScholarPubMed
Leunissen, M. E., Christova, C. G., Hynninen, A.-P., Royall, C. P., Campbell, A. I., Imhof, A., Dijkstra, M., van Roij, R. & van Blaaderen, A. 2005 b Ionic colloidal crystals of oppositely charged particles. Nature 437 (7056), 235240.CrossRefGoogle ScholarPubMed
Lowen, H. 1992 Structure and Brownian dynamics of the two-dimensional Yukawa fluid. J. Phys.: Condens. Matter 4 (50), 1010510116.Google Scholar
Löwen, H. 1994 Melting, freezing and colloidal suspensions. Phys. Rep. 237 (5), 249324.CrossRefGoogle Scholar
Löwen, H. & Kramposthuber, G. 1993 Optimal effective pair potential for charged colloids. Europhys. Lett. 23 (9), 673678.CrossRefGoogle Scholar
Marro, J. & Dickman, R. 1999 Nonequilibrium Phase Transitions in Lattice Models. Cambridge University Press.CrossRefGoogle Scholar
Michel, F. C. 1991 Theory of Neutron Star Magnetospheres. Theoretical Astrophysics, Chicago, London: University of Chicago Press.Google Scholar
Netz, R. R. 2003 Conduction and diffusion in two-dimensional electrolytes. Europhys. Lett. 63 (4), 616622.CrossRefGoogle Scholar
Oohara, W., Date, D. & Hatakeyama, R. 2005 Electrostatic waves in a paired fullerene-ion plasma. Phys. Rev. Lett. 95, 175003.CrossRefGoogle Scholar
Oohara, W. & Hatakeyama, R. 2003 a Pair-ion plasma generation and fullerene-dimer formation. Thin Solid Films 435, 280284.CrossRefGoogle Scholar
Oohara, W. & Hatakeyama, R. 2003 b Pair-ion plasma generation using fullerenes. Phys. Rev. Lett. 91, 205005.CrossRefGoogle ScholarPubMed
Oohara, W. & Hatakeyama, R. 2007 Basic studies of the generation and collective motion of pair-ion plasmas. Phys. Plasmas 14 (5), 055704.CrossRefGoogle Scholar
Ott, T. & Bonitz, M. 2011 Diffusion in a strongly coupled magnetized plasma. Phys. Rev. Lett. 107, 135003.CrossRefGoogle Scholar
Paul N. Arendt, J. & Eilek, J. A. 2002 Pair creation in the pulsar magnetosphere. Astrophys. J. 581 (1), 451469.CrossRefGoogle Scholar
Pilch, I., Piel, A., Trottenberg, T. & Koepke, M. E. 2007 Dynamics of small dust clouds trapped in a magnetized anodic plasma. Phys. Plasmas 14 (12), 123704.CrossRefGoogle Scholar
Pilch, I., Reichstein, T. & Piel, A. 2008 Torus-shaped dust clouds trapped in a magnetized anodic plasma. Phys. Plasmas 15 (10), 103706.CrossRefGoogle Scholar
Piran, T. 1999 Gamma-ray bursts and the fireball model. Phys. Rep. 314 (6), 575667.CrossRefGoogle Scholar
Piran, T. 2005 The physics of gamma-ray bursts. Rev. Mod. Phys. 76, 11431210.CrossRefGoogle Scholar
Rex, M. & Löwen, H. 2008 Influence of hydrodynamic interactions on lane formation in oppositely charged driven colloids. Eur. Phys. J. E 26, 143150.CrossRefGoogle ScholarPubMed
Royall, C. P., Leunissen, M. E., Hynninen, A.-P., Dijkstra, M. & van Blaaderen, A. 2006 Re-entrant melting and freezing in a model system of charged colloids. J. Chem. Phys. 124 (24), 244706.CrossRefGoogle Scholar
Sahu, B., Pal, B., Poria, S. & Roychoudhury, R. 2015 Nonlinear dynamics of ion acoustic waves in quantum pair-ion plasmas. J. Plasma Phys. 81 (5), 905810510.CrossRefGoogle Scholar
Sarma, U., Baruah, S. & Ganesh, R. 2020 Lane formation in driven pair-ion plasmas. Phys. Plasmas 27, 012106.CrossRefGoogle Scholar
Sato, N., Uchida, G., Kaneko, T., Shimizu, S. & Iizuka, S. 2001 Dynamics of fine particles in magnetized plasmas. Phys. Plasmas 8 (5), 17861790.CrossRefGoogle Scholar
Strümpel, C., Astrov, Y. A. & Purwins, H.-G. 2002 Multioscillatory patterns in a hybrid semiconductor gas-discharge system. Phys. Rev. E 65, 066210.CrossRefGoogle Scholar
Sütterlin, K. R., Wysocki, A., Ivlev, A. V., Räth, C., Thomas, H. M., Rubin-Zuzic, M., Goedheer, W. J., Fortov, V. E., Lipaev, A. M., Molotkov, V. I., et al. 2009 Dynamics of lane formation in driven binary complex plasmas. Phys. Rev. Lett. 102, 085003.CrossRefGoogle ScholarPubMed
Tandberg-Hanssen, E. & Emslie, A. G. 1988 The Physics of Solar Flares. Cambridge University Press.Google Scholar
Tarama, S., Egelhaaf, S. U. & Löwen, H. 2019 Traveling band formation in feedback-driven colloids. Phys. Rev. E 100, 022609.CrossRefGoogle ScholarPubMed
Thomas, E., Lynch, B., Konopka, U., Menati, M., Williams, S., Merlino, R. L. & Rosenberg, M. 2019 Pattern formation in strongly magnetized plasmas: observations from the magnetized dusty plasma experiment (MDPX) device. Plasma Phys. Control. Fusion 62 (1), 014006.CrossRefGoogle Scholar
Uchida, G., Konopka, U. & Morfill, G. 2004 Wave dispersion relation of two-dimensional plasma crystals in a magnetic field. Phys. Rev. Lett. 93, 155002.CrossRefGoogle Scholar
Vissers, T., van Blaaderen, A. & Imhof, A. 2011 a Band formation in mixtures of oppositely charged colloids driven by an ac electric field. Phys. Rev. Lett. 106, 228303.CrossRefGoogle ScholarPubMed
Vissers, T., Wysocki, A., Rex, M., Löwen, H., Royall, C. P., Imhof, A. & van Blaaderen, A. 2011 b Lane formation in driven mixtures of oppositely charged colloids. Soft Matt. 7, 23522356.CrossRefGoogle Scholar
Zank, G. P. & Greaves, R. G. 1995 Linear and nonlinear modes in nonrelativistic electron-positron plasmas. Phys. Rev. E 51, 60796090.CrossRefGoogle ScholarPubMed