Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-13T00:50:05.187Z Has data issue: false hasContentIssue false

Effect of electron thermal anisotropy on the kinetic cross-field streaming instability

Published online by Cambridge University Press:  13 March 2009

S. T. Tsai
Affiliation:
Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742
M. Tanaka
Affiliation:
Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742
J. D. Gaffey Jr
Affiliation:
Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742
E. H. Da Jornada
Affiliation:
Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742
C. S. Wu
Affiliation:
Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742
L. F. Ziebell
Affiliation:
Instituto de Física, Universidade Federal do Rio Grande do Sul, 90.000 Porto Alegre, R.S., Brasil

Abstract

The investigation of the kinetic cross-field streaming instability, motivated by the research of collisionless shock waves and previously studied by Wu et al., is discussed more fully in the present work. Since, in the ramp region of a quasi-perpendicular shock, electrons can be preferentially heated in the direction transverse to the ambient magnetic field, it is both desirable and necessary to include the effect of the thermal anisotropy on the instability associated with a shock. The present study has found that Te > Te can significantly enhance the peak growth rate of the cross-field streaming instability when the electron beta is sufficiently high. Furthermore, the present analysis also improves the analytical and numerical solutions previously obtained.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

da Jornada, E. H., Gaffey, J. D. & Winske, D. 1984 Phys. Fluids, 27. (To be published.)Google Scholar
Hsia, J. B., Chiu, S. M., Hsia, M. F., Chou, R. L. & Wu, C. S. 1979 Phys. Fluids, 22, 1737.CrossRefGoogle Scholar
Kennel, C. F. & Petschek, H. E. 1966 J. Geophys. Res. 71, 1.CrossRefGoogle Scholar
Lemons, D. S. & Gary, S. P. 1977 J. Geophys. Res. 82, 2337.CrossRefGoogle Scholar
Leroy, M. M., Goodrich, C. C., Winske, D., Wu, C. S. & Papadopoulos, K. 1981 Geophys. Res. Lett. 8, 1269.CrossRefGoogle Scholar
Leroy, M. M., Winske, D., Goodrich, C. C., Wu, C. S. & Papadopoulos, K. 1982 J. Geophys. Res. 87, 5081.CrossRefGoogle Scholar
McBride, J. B. & Ott, E. 1972 Phys. Lett. 39A, 363.CrossRefGoogle Scholar
McBride, J. B., Ott, E., Boris, J. P. & Orens, J. H. 1972 Phys. Fluids, 15, 2367.CrossRefGoogle Scholar
Mikhailovskii, A. B. 1975 Reviews of Plasma Physics (ed. Leontovich, M. A.), vol. 6. Consultants Bureau.Google Scholar
Paschmann, G., Sckopke, N., Bame, S. J. & Gosling, J. T. 1982 Geophys. Res. Lett. 9, 881.Google Scholar
Ross, D. W. 1970 Phys. Fluids, 12, 764.Google Scholar
Sharer, J. R. & Trivelpiece, A. W. 1967 Phys. Fluids, 10, 591.CrossRefGoogle Scholar
Stix, T. H. 1962 The Theory of Plasma Waves. McGraw-Hill.Google Scholar
Tsai, S. T., Wu, C. S., Wang, Y. D. & Kang, S. W. 1981 Phys. Fluids, 24, 2186.CrossRefGoogle Scholar
Wu, C. S., Zhou, Y. M., Tsai, S. T., Guo, S. C., Winske, D. & Papadopoulos, K. 1983 Phys. Fluids, 26, 1259.CrossRefGoogle Scholar
Wu, C. S. et al. 1984 Space Sci. Rev. 37, 63.CrossRefGoogle Scholar
Zohu, Y. M., Wong, H. K., Wu, C. S. & Winske, D. 1983 J. Geophys. Res. 88, 3062.Google Scholar