Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-22T22:18:54.773Z Has data issue: false hasContentIssue false

Effect of dust particle and magnetic field on EEPF and plasma oscillation

Published online by Cambridge University Press:  08 July 2019

D. Kalita*
Affiliation:
Centre of Plasma Physics-IPR, Nazirakhat, Sonapur, Kamrup -782 402, Assam, India
B. Kakati
Affiliation:
Assam Science and Technology University, Jalukbari, Guwahati-781014, Assam, India
S. S. Kausik
Affiliation:
Centre of Plasma Physics-IPR, Nazirakhat, Sonapur, Kamrup -782 402, Assam, India
B. K. Saikia
Affiliation:
Centre of Plasma Physics-IPR, Nazirakhat, Sonapur, Kamrup -782 402, Assam, India Homi Bhabha National Institute (HBNI), BARC, Anushaktinagar, Mumbai, Maharashtra, India
M. Bandyopadhyay
Affiliation:
ITER-India, Institute for Plasma Research, Bhat, Gandhinagar- 382 428, India Homi Bhabha National Institute (HBNI), BARC, Anushaktinagar, Mumbai, Maharashtra, India
*
Email address for correspondence: [email protected]

Abstract

The significance of dust particles for the electron energy probability function (EEPF) and plasma oscillations is studied under varying magnetic field strength in a filamentary discharge hydrogen plasma. The experimental result shows that with an increase in dust density, the electron density decreases as a result of the charging of dust grains in the plasma background. A bi-Maxwellian EEPF is computed in both a pristine hydrogen plasma and a dust-containing plasma at different magnetic field strengths. We have observed that the increase in magnetic field decreases the lower energy electron population. The electron population of the lower energy range shows nearly identical results at magnetic field, $B\leqslant 3.7$ mT whereas the behaviour of the high-energy electron population becomes identical for a field strength $B\leqslant 5.8$ mT. From the observation, we have seen that the mid energy electron population slightly decreases and the high energy electron population slightly increases due to the presence of dust particles as compared to a pristine plasma. Further, very low energy electron population remains almost unchanged. With increase in dust density, the mid energy electron population further decreases whereas the high energy electron population slightly increases for different magnetic fields. But, no changes were observed for the very low energy electron population in the presence of dust particles. From the study of plasma oscillation, it is observed that the dominant frequency associated with the plasma oscillation is matched with the ion cyclotron frequency. The amplitude of the ion cyclotron frequency reduces with the increase of dust density which might be due to the decrease of plasma density.

Type
Research Article
Copyright
© Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bilik, N., Anthony, R., Merritt, B. A., Aydil, E. S. & Kortshagen, U. R. 2015 Langmuir probe measurements of electron energy probability functions in dusty plasmas. J. Phys. D: Appl. Phys. 48, 105204.Google Scholar
Boeuf, J. 1992 Characteristics of dusty nonthermal plasma from a particle-in-cell Monte Carlo simulation. Phys. Rev. A 46, 7910.Google Scholar
Crutcher, R. M. 2012 Magnetic fields in molecular clouds. Annu. Rev. Astron. Astrophys. 50, 29.Google Scholar
Denysenko, I., Ostrikov, K., Yu, M. & Azarenkov, N. 2006 Behavior of the electron temperature in nonuniform complex plasmas. Phys. Rev. E 74, 036402.Google Scholar
Denysenko, I., Yu, M., Ostrikov, K., Azarenkov, N. & Stenflo, L. 2004a A kinetic model for an argon plasma containing dust grains. Phys. Plasmas 11, 4959.Google Scholar
Denysenko, I., Yu, M., Ostrikov, K. & Smolyakov, A. 2004b Spatially averaged model of complex-plasma discharge with self-consistent electron energy distribution. Phys. Rev. E 70, 046403.Google Scholar
Denysenko, I. B., Kersten, H. N. & Azarenkov, A. 2015 Electron energy distribution in a dusty plasma: analytical approach. Phys. Rev. E 92, 033102.Google Scholar
Ding, Q. Y., Zhang, S. B. & Wang, J. G. 2011 Simulation of hydrogen emission spectrum in Debye plasmas. Chin. Phys. Lett. 28, 053202.Google Scholar
Godyak, V. & Demidov, V. 2011 Probe measurements of electron-energy distributions in plasmas: what can we measure and how can we achieve reliable results? J. Phys. D: Appl. Phys. 44, 233001.Google Scholar
Goedheer, W., Akdim, M. & Chutov, Y. I. 2004 Hydrodynamic and kinetic modelling of dust free and dusty radio-frequency discharges. Contrib. Plasma Phys. 44, 395.Google Scholar
Greiner, F., Carstenson, J., Kohler, N., Pilch, I. & Piel, A. 2013 Trapping of nanodust clouds in a magnetized plasma. AIP Conf. Proc. 1521, 265.Google Scholar
Ip, W. H. & Mendis, D. A. 1976 The generation of magnetic fields and electric currents in cometary plasma tails. ICARUS 29, 147.Google Scholar
Kagan, YU. & Perel, V. L. 1964 Probe methods in plasma research. Sov. Phys. Uspekhi 6, 767.Google Scholar
Kakati, B., Kalita, D., Kausik, S. S., Bandyopadhyay, M. & Saikia, B. K. 2014a Studies on hydrogen plasma and dust charging in low- pressure filament discharge. Phys. Plasmas 21, 083704.Google Scholar
Kakati, B., Kausik, S. S., Saikia, B. K., Bandyopadhyay, M. & Saxena, Y. C. 2014b Effect of argon addition on plasma parameters and dust charging in hydrogen plasma. J. Appl. Phys. 116, 163302.Google Scholar
Kakati, B., Kausik, S. S., Saikia, B. K. & Bandyopadhyay, M. 2011 Study on plasma parameters and dust charging in an electrostatically plugged multicusp plasma device. Phys. Plasmas 18, 033705.Google Scholar
Kalita, D., Kakati, B., Saikia, B. K., Bandyopadhyay, M. & Kausik, S. S. 2015 Effect of magnetic field on dust charging and corresponding probe measurement. Phys. Plasmas 22, 113704.Google Scholar
Kalita, D., Kakati, B., Kausik, S. S., Saikia, B. K. & Bandyopadhyay, M. 2018 Studies on probe measurements in presence of magnetic field in dust containing hydrogen plasma. Eur. Phys. J. D 72, 74.Google Scholar
Li, G., Zhang, Y., Xu, Y. J., Lin, B. Y., Li, T. & Zhu, J. Q. 2009 Measurement of plasma density produced in dielectric barrier discharge for active aerodynamic control with interferometer. Chin. Phys. Lett. 26, 105202.Google Scholar
Lieberman, M. A. & Lichtenberg, A. J. 2005 Principles of Plasma Discharges and Materials Processing. Wiley.Google Scholar
Maemura, Y., Yang, S. C. & Fujiyama, H. 1998 Transport of negatively charged particles by $E\times B$ drift in silane plasmas. Surface and Coatings Technol. 98, 1351.Google Scholar
Nakamura, Y. 2002 Experiments on ion-acoustic shock waves in a dusty plasma. Phys. Plasmas 9, 440.Google Scholar
Nam, S. K. & Verboncoeur, J. P. 2009 Global model for high power microwave breakdown at high pressure in air. Comput. Phys. Commun. 180, 628.Google Scholar
Ostrikov, K., Denysenko, I., Yu, M. & Xu, S. 2005 Electron energy distribution function in low-pressure complex plasmas. J. Plasma Phys. 71, 217.Google Scholar
Samukawa, S. 1994 Highly selective and highly anisotropic SiO2 etching in Pulse- time modulated electron cyclotron resonance plasma. Japan. J. Appl. Phys. 33, 2133.Google Scholar
Stangeby, P. C. 1982 Effect of bias on trapping probes and bolometers for Tokamak edge diagnosis. J. Phys. D 15, 1007.Google Scholar
Sternberg, N., Godyak, V. & Hoffman, D. 2006 Magnetic field effects on gas discharge plasmas. Phys. Plasmas 13, 063511.Google Scholar
Tadsen, B., Greiner, F. & Piel, A. 2014 Preparation of magnetized nanodusty plasmas in a radio frequency-driven parallel plate reactor. Phys. Plasmas. 21, 103704.Google Scholar
Thomas, E. Jr., Merlino, R. L. & Rosenberg, M. 2012 Magnetized dusty plasmas: the next frontier for complex plasma research. Plasma Phys. Control. Fusion 54, 24034.Google Scholar
Wang, D. & Dong, J. 1997 Kinetics of low pressure rf discharges with dust particles. J. Appl. Phys. 81, 38.Google Scholar
Yang, S. C., Nakajima, Y., Maemura, Y., Matsuda, Y. & Fujiyama, H. 1996 Mechanism of particle transport in magnetized silane plasmas. Plasma Sources Sci. Technol. 5, 333.Google Scholar