Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T00:26:16.412Z Has data issue: false hasContentIssue false

Dynamics of charge density fluctuations in two-component hydrogen plasma

Published online by Cambridge University Press:  13 March 2009

F. Yoshida
Affiliation:
Institute of Theoretical Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden

Extract

A systematic study is made of the dynamical properties of the charge density fluctuations in strongly coupled two-component plasmas. The time-correlation function of the partial density fluctuations is described with the use of the memory function formalism. A second-order memory function is approximately expressed in terms of its self-part by taking into account the total momentum conservation law. After assuming a Gaussian time-dependence for the self-part, the excitation spectrum of the charge density fluctuation is calculated for the semi-classical hydrogen plasma, and is in fairly good agreement with the molecular dynamics calculation due to Hansen & McDonald. It is found that the collisional effects play an important role in the strongly coupled system.

Type
Articles
Copyright
Copyright © Cambridge University Press 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abramo, M. C., Parrinello, M. & Tosi, M. P. 1974 J. Phys. C 7, 4201.Google Scholar
Barker, A. A. 1968 Phys. Rev. 171, 168.CrossRefGoogle Scholar
Baus, M. 1977 a Physica, 88 A, 319.CrossRefGoogle Scholar
Baus, M. 1977 b Physica, 88 A, 335.Google Scholar
Baus, M. 1977 c Physica, 88 A, 591.CrossRefGoogle Scholar
Baus, M. & Hansen, J. P. 1980 Phys. Rep. 59, 1.CrossRefGoogle Scholar
Baus, M., Hansen, J. P. & Sjögren, L. 1981 Phys. Lett. 82 A, 180.CrossRefGoogle Scholar
Copley, J. R. D. & Lovesey, S. W. 1975 Rep. Prog. Phys. 38, 463.CrossRefGoogle Scholar
Deutsch, C. 1966 Phys. Lett. 45, 2102.Google Scholar
Gould, H. & Mazenko, G. F. 1975 Phys. Rev. Lett. 35, 1455.CrossRefGoogle Scholar
Gould, H. & Mazenko, G. F. 1977 Phys. Rev. A15, 1274.CrossRefGoogle Scholar
Hansen, J. P. & McDonald, I. R. 1978 Phys. Rev. Lett. 41, 1379.CrossRefGoogle Scholar
Hansen, J. P. & McDonald, I. R. 1981 Phys. Rev., A 23, 2041.CrossRefGoogle Scholar
Hansen, J. P., McDonald, I. R. & Vieillefosse, P. 1979 Phys. Rev. A 20, 2590.CrossRefGoogle Scholar
Hansen, J. P. & Sjögren, L. 1981 Phys. Fluids (In press.)Google Scholar
Kim, K. & Nelkin, M. 1971 Phys. Rev., A 4, 2065.CrossRefGoogle Scholar
Lovesey, S. W. 1973 J. Phys., C 6, 1856.Google Scholar
March, N. H. & Tosi, M. P. 1973 Ann. Phys. 81, 414.CrossRefGoogle Scholar
McDonald, I. R., Vieillefosse, P. & Hansen, J. P. 1977 Phys. Rev. Lett. 39, 271.CrossRefGoogle Scholar
Mitra, S. K. & Sjödin, S. 1978 J. Phys. C 11, 2655.Google Scholar
Mori, H. 1965 a Prog. Theor. Phys. 33, 423.CrossRefGoogle Scholar
Mori, H. 1965 b Prog. Theor. Phys. 34, 399.CrossRefGoogle Scholar
Sjögren, L. & Sjölander, A. 1979 J. Phys. C 12, 4369.Google Scholar
Sjögren, L. 1980 Phys. Rev. A 22, 2866.CrossRefGoogle Scholar
Sjögren, L., Hansen, J. P. & Pollock, E. L. 1981 Phys. Rev. A 24, 1544.CrossRefGoogle Scholar
Takeno, S. & Yoshida, F. 1978 Prog. Theor. Phys. 60, 1304.CrossRefGoogle Scholar
Tosi, M. P., Parrinello, M. & March, N. H. 1974 Nuovo Cimento, 23 B, 135.CrossRefGoogle Scholar
Yoshida, F. & Takeno, S. 1978 J. Phys. C 11, 2895.Google Scholar
Yoshida, F. 1981 J. Phys. C 14, 573.Google Scholar