Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T14:54:33.536Z Has data issue: false hasContentIssue false

Dynamics and conservation laws in electrostatic plasma turbulence

Published online by Cambridge University Press:  13 March 2009

Klaus Elsässer
Affiliation:
Ruhr-UniversitätBochum, Theoretische Physik I, D-4630 Bochum, W. Germany
Hans Schamel
Affiliation:
Ruhr-UniversitätBochum, Theoretische Physik I, D-4630 Bochum, W. Germany

Abstract

We show how the Hamiltonian description of an ideal fluid can be used for a two fluid plasma. Translation to wave variables leads to a simple rule to obtain coupled-mode equations if the energy is known as a function of wave variables. In this context we discuss the intimate connexion between a particular dynamical model, specified by the interaction Hamiltonian, and the associated invariants of motion. By this method we derive an improved version of Zakharov's equations for Langmuir and ion sound waves with the correct invariants of motion. As a result of these corrections we find a stationary power law k−2 for the plasmon energy.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1976

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allcock, G. R. & Kuper, C. G. 1955 Proc. Roy. Soc. A 231, 226.Google Scholar
Bateman, H. 1932 Partial Differential Equations of Mathematical Physics, p. 164. Cambridge University Press.Google Scholar
Clebsch, A. 1859 J. reine u. angew. Math. 56, 1.Google Scholar
Elsässer, K. & Schamel, H. 1973 MPI-PAE/Astro 59.Google Scholar
Elsässer, K. & Schamel, H. 1975 Submitted to J. Comp. Phys.Google Scholar
Fukai, J. & Harris, E. G. 1971 Phys. Fluids, 14, 1748.CrossRefGoogle Scholar
Harris, E. G. 1969 Advances in Plasma Physics (ed. Simon, A. & Thompson, W. B.), p. 157. Interscience.Google Scholar
Kadomtsev, B. B. 1965 Plasma Turbulence. Academic.Google Scholar
Katz, J. I., De Groot, J. S. & Faehl, R. J. 1975 Phys. Fluids, 18, 1173.CrossRefGoogle Scholar
Litvak, M. M. 1960 Avco Everett Research Report no. 92.Google Scholar
Nishikawa, K., Lee, Y. C. & Liu, C. S. 1975 Comments on plasma phys. and contr.fusion 2, 63.Google Scholar
Sagdeev, R. Z. & Galeev, A. A. 1969 Nonlinear Plasma Theory. W. A. Benjamin.Google Scholar
Thomson, J. J., Faehl, R. J., Kruer, W. L. & Bodner, S. 1974 Phys. Fluids, 17, 973.Google Scholar
Whitham, G. B. 1974 Linear and Nonlinear Waves. John Wiley & Sons.Google Scholar
Zakharov, V. E. 1972 Soviet Physics JETP, 35, 908.Google Scholar
Ziman, J. M. 1953 Proc. Roy. Soc. A 219, 257.Google Scholar