Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T06:47:08.891Z Has data issue: false hasContentIssue false

Dynamical behaviors of nonlinear dust acoustic waves: From plane waves to dust acoustic wave turbulence

Published online by Cambridge University Press:  25 June 2014

Ya-Yi Tsai
Affiliation:
Department of Physics and Center for Complex Studies, National Central University, Jhongli, Taiwan 32001, Republic of China
Mei-Chu Chang
Affiliation:
Department of Physics and Center for Complex Studies, National Central University, Jhongli, Taiwan 32001, Republic of China
Lin I.*
Affiliation:
Department of Physics and Center for Complex Studies, National Central University, Jhongli, Taiwan 32001, Republic of China
*
Email address for correspondence: [email protected]

Abstract

The dust acoustic wave (DAW), associated with longitudinal dust oscillations in dusty plasmas, can be self-excited from the free energy of ion streaming. It is not only a fundamental plasma wave but also a paradigm to understand the generic dynamical behaviors of self-excited nonlinear longitudinal density waves through optically monitoring particle motion and dust density evolutions over a large area. In this paper, the dynamical behaviors of the wave-particle interaction and wave breaking in ordered self-excited DAW with straight wave fronts, and the defect-mediated wave turbulence with fluctuating defects and chaotic low amplitude hole filaments along defect trajectories in the 2+1D space-time space, are briefly reviewed. The first experimental observation of acoustic vortices with helical waveforms in self-excited acoustic-type defect-mediated wave turbulence, and the dynamics of spontaneous pair generation, propagation, and pair annihilation of acoustic vortices, is demonstrated and discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Antar, G. Y., Krasheninnikov, S. I., Devynck, P., Doerner, R. P., Hollmann, E. M., Boedo, J. A., Luckhardt, S. C. and Conn, R. W. 2001 Experimental evidence of intermittent convection in the edge of magnetic confinement devices. Phys. Rev. Lett. 87, 065001.Google Scholar
Bodenschatz, E., Pesch, W. and Ahlers, G. 2000 Phase singularities and filaments: simplifying complexity in computational models of ventricular fibrillation. Annu. Rev. Fluid Mech. 32, 709.Google Scholar
Chang, M. C., Teng, L. W. and I, L. 2012 Micro-origin of no-trough trapping in self-excited nonlinear dust acoustic waves. Phys. Rev. E 85, 046410.CrossRefGoogle ScholarPubMed
Chang, M. C., Tsai, Y. Y. and I, L. 2013 Observation of 3D defect-mediated dust acoustic wave turbulence with fluctuating defects and amplitude hole filaments. Phys. Plasma 20, 083703.CrossRefGoogle Scholar
Chen, F. F. 1974 Introduction to Plasma Physics. New York, NY: Plenum Press, 199 pp.CrossRefGoogle Scholar
Clayton, R. H., Zhuchkova, E. A. and Panfilov, A. V. 2006 Phase singularities and filaments: simplifying complexity in computational models of ventricular fibrillation. Prog. Biophys. Mol. Biol. 90, 378.Google Scholar
Coullet, P., Gil, L. and Lega, J. 1989 Defect-mediated turbulence. Phys. Rev. Lett. 62, 1619.Google Scholar
Cross, M. C. and Hohenberg, P. C. 1993 Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851.Google Scholar
Dawson, J. M. 1959 Nonlinear electron oscillations in a cold plasma. Phys. Rev. 113, 383.Google Scholar
Falcon, E., Fauve, S. and Laroche, C. 2007 Observation of intermittency in wave turbulence. Phys. Rev. Lett. 98, 154501.CrossRefGoogle ScholarPubMed
Fortov, V. E., Usachev, A. D., Zobnin, A. V., Molotkov, V. I. and Petrov, O. F. 2003 Dust-acoustic wave instability at the diffuse edge of radio frequency inductive low-pressure gas discharge plasma. Phys. Plasmas 10, 1199.CrossRefGoogle Scholar
Gabor, D. 1946 Theory of communication. J. Inst. Electr. Eng. Radio Commun. Eng. 93, 429.Google Scholar
Hefiner, B. T. and Marston, P. L. 1999 An acoustical helicoidal wave transducer with applications for the alignment of ultrasonic and underwater systems. J. Acoust. Soc. Am. 10, 3313.Google Scholar
Kaw, P. and Singh, R. 1997 Collisional instabilities in a dusty plasma with recombination and ion-drift effects. Phys. Rev. Lett. 79, 423.Google Scholar
Liao, C. T., Teng, L. W., Tsai, C. Y., Io, C. W. and I, L. 2008 Lagrangian-eulerian micromotion and wave heating in nonlinear self-excited dust-acoustic waves. Phys. Rev. Lett. 100, 185004.Google Scholar
Menzel, K. O., Arp, O. and Piel, A. 2010 Spatial frequency clustering in nonlinear dust-density waves. Phys. Rev. Lett. 104, 235002.Google Scholar
Modena, A., Najmudin, Z., Dangor, A. E., Clayton, C. E., Marsh, K. A., Joshi, C., Malka, V., Darrow, C. B., Danson, C., Neely, D.et al. 1995 Electron acceleration from the breaking of relativistic plasma waves. Nature (Lond.) 377, 606.Google Scholar
Nye, J. F. and Berry, M. V. 1974 Dislocations in wave trains. Proc. R. Soc. Lond. A 336, 165.Google Scholar
Piel, A., Klindworth, M., Arp, O., Melzer, A. and Wolter, M. 2006 Obliquely propagating dust-density plasma waves in the presence of an ion beam. Phys. Rev. Lett. 97, 205009.Google Scholar
Qiao, C., Wang, H. and Ouyang, Q. 2009 Defect-mediated turbulence in the Belousov–Zhabotinsky reaction. Phys. Rev. E 79, 016212.CrossRefGoogle ScholarPubMed
Rao, N. N., Shukla, P. K. and Yu, M. Y. 1990 Defect-mediated turbulence in the Belousov–Zhabotinsky reaction. Planet. Space Sci. 38, 543.Google Scholar
Schwabe, M., Rubin-Zuzic, M., Zhdanov, S., Thomas, H. M. and Morfill, G. E. 2007 Highly resolved self-excited density waves in a complex plasma. Phys. Rev. Lett. 99, 095002.Google Scholar
Shukla, P. K. 2012 Twisted dust acoustic waves in dusty plasmas. Phys. Plasma 19, 083704.CrossRefGoogle Scholar
Shukla, P. K. and Eliasson, B. 2012 Nonlinear dynamics of large-amplitude dust acoustic shocks and solitary pulses in dusty plasmas. Phys. Rev. E 86, 046402.Google Scholar
Teng, L. W., Chang, M. C., Tseng, Y. P. and I, L. 2009 Wave-particle dynamics of wave breaking in the self-excited dust acoustic wave. Phys. Rev. Lett. 103, 245005.Google Scholar
Thomas, J-L. and Marchiano, R. 2003 Pseudo angular momentum and topological charge conservation for nonlinear acoustical vortices. Phys. Rev. Lett. 91, 244302.CrossRefGoogle ScholarPubMed
Tsai, Y. Y., Chang, M. C. and I, L. 2012 Observation of multifractal intermittent dust-acoustic-wave turbulence. Phys. Rev. E 86, 045402(R).Google Scholar
Tsai, Y. Y. and I, L. Submitted Observation of self-excited acoustic vortices in defect mediated dust acoustic wave turbulence. Phys. Rev. E.Google Scholar
Vinson, M., Mlronov, S., Mulvey, S. and Pertsov, A. 1997 Control of spatial orientation and lifetime of scroll rings in excitable media. Nature 386, 477.Google Scholar
Volke-Sepulveda, K., Santillan, A. O. and Boullosa, R. R. 2008 Pseudo angular momentum and topological charge conservation for nonlinear acoustical vortices. Phys. Rev. Lett. 100, 024302.Google Scholar