Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-23T03:57:37.607Z Has data issue: false hasContentIssue false

Dust vortices in a direct current glow discharge plasma: a delicate balance between ion drag and Coulomb force

Published online by Cambridge University Press:  11 February 2019

Sayak Bose*
Affiliation:
Institute for Plasma Research, HBNI, Bhat, Gandhinangar - 382428, India Columbia Astrophysics Laboratory, Columbia University, 550 West 120th Street, New York City, NY 10027, USA
M. Kaur
Affiliation:
Institute for Plasma Research, HBNI, Bhat, Gandhinangar - 382428, India Department of Physics and Astronomy, Swarthmore College, Swarthmore, PA 19081, USA
P. K. Chattopadhyay
Affiliation:
Institute for Plasma Research, HBNI, Bhat, Gandhinangar - 382428, India
J. Ghosh
Affiliation:
Institute for Plasma Research, HBNI, Bhat, Gandhinangar - 382428, India
Edward Thomas Jr
Affiliation:
Department of Physics, Auburn University, Auburn, AL 36849, USA
Y. C. Saxena
Affiliation:
Institute for Plasma Research, HBNI, Bhat, Gandhinangar - 382428, India
*
Email address for correspondence: [email protected]

Abstract

Dust vortices with a void at the centre are reported in this paper. The role of the spatial variation of the plasma potential in the rotation of dust particles is studied in a parallel plate glow discharge plasma. Probe measurements reveal the existence of a local potential minimum in the region of formation of the dust vortex. The minimum in the potential well attracts positively charged ions, while it repels the negatively charged dust particles. Dust rotation is caused by the interplay of the two oppositely directed ion drag and Coulomb forces. The balance between these two forces is found to play a major role in the radial confinement of the dust particles above the cathode surface. Evolution of the dust vortex is studied by increasing the discharge current from 15 to 20 mA. The local minimum of the potential profile is found to coincide with the location of the dust vortex for both values of discharge currents. Additionally, it is found that the size of the dust vortex as well as the void at the centre increases with the discharge current.

Type
Research Article
Copyright
© Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adhikary, N. C., Bailung, H., Pal, A. R., Chutia, J. & Nakamura, Y. 2007 Observation of sheath modification in laboratory dusty plasma. Phys. Plasmas 14 (10), 103705.Google Scholar
Akdim, M. R. & Goedheer, W. J. 2003 Modeling of self-excited dust vortices in complex plasmas under microgravity. Phys. Rev. E 67 (5), 056405.Google Scholar
Barkan, A., Merlino, R. L. & D’angelo, N. 1995 Laboratory observation of the dust-acoustic wave mode. Phys. Plasmas 2 (10), 35633565.Google Scholar
Bose, S., Kaur, M., Chattopadhyay, P. K., Ghosh, J., Saxena, Y. C. & Pal, R. 2017 Langmuir probe in collisionless and collisional plasma including dusty plasma. J. Plasma Phys. 83 (2), 615830201.Google Scholar
Chai, K.-B. & Bellan, P. M. 2016 Vortex motion of dust particles due to non-conservative ion drag force in a plasma. Phys. Plasmas 23 (2), 023701.Google Scholar
Chu, J. H. & Lin, I. 1994 Direct observation of Coulomb crystals and liquids in strongly coupled RF dusty plasmas. Phys. Rev. Lett. 72 (25), 4009.Google Scholar
Epstein, P. S. 1924 On the resistance experienced by spheres in their motion through gases. Phys. Rev. 23 (6), 710.Google Scholar
Fortov, V. E. & Morfill, G. E. 2010 Complex and Dusty Plasmas: From Laboratory to Space. CRC Press.Google Scholar
Frost, L. S. 1957 Effect of variable ionic mobility on ambipolar diffusion. Phys. Rev. 105, 354356.Google Scholar
Ivlev, A. V., Khrapak, S. A., Zhdanov, S. K., Morfill, G. E. & Joyce, G. 2004 Force on a charged test particle in a collisional flowing plasma. Phys. Rev. Lett. 92, 205007.Google Scholar
Ivlev, A. V., Zhdanov, S. K., Khrapak, S. A. & Morfill, G. E. 2005 Kinetic approach for the ion drag force in a collisional plasma. Phys. Rev. E 71, 016405.Google Scholar
Kaur, M., Bose, S., Chattopadhyay, P. K., Ghosh, J. & Saxena, Y. C. 2016 Complex plasma experimental device – a test bed for studying dust vortices and other collective phenomena. Pramana 87 (6), 89.Google Scholar
Kaur, M., Bose, S., Chattopadhyay, P. K., Sharma, D., Ghosh, J. & Saxena, Y. C. 2015a Observation of dust torus with poloidal rotation in direct current glow discharge plasma. Phys. Plasmas 22 (3), 033703.Google Scholar
Kaur, M., Bose, S., Chattopadhyay, P. K., Sharma, D., Ghosh, J., Saxena, Y. C. & Thomas, E. Jr. 2015b Generation of multiple toroidal dust vortices by a non-monotonic density gradient in a direct current glow discharge plasma. Phys. Plasmas 22 (9), 093702.Google Scholar
Kaur, M., Bose, S., Chattopadhyay, P. K., Ghosh, J. & Saxena, Y. C. 2015c Resolving issues associated with Langmuir probe measurements in high pressure complex (dusty) plasmas. In Proceedings of the Tenth Asia Plasma and Fusion Association Conference, p. 168.Google Scholar
Khrapak, S. A. & Morfill, G. E. 2008 An interpolation formula for the ion flux to a small particle in collisional plasmas. Phys. Plasmas 15 (11), 114503.Google Scholar
Laframboise, J. G.1966 Theory of spherical and cylindrical Langmuir probes in a collisionless, maxwellian plasma at rest. Tech. Rep. DTIC Document.Google Scholar
Laishram, M., Sharma, D. & Kaw, P. K. 2014 Dynamics of a confined dusty fluid in a sheared ion flow. Phys. Plasmas 21 (7), 073703.Google Scholar
Law, D. A., Steel, W. H., Annaratone, B. M. & Allen, J. E. 1998 Probe-induced particle circulation in a plasma crystal. Phys. Rev. Lett. 80, 41894192.Google Scholar
Liu, B., Goree, J., Nosenko, V. & Boufendi, L. 2003 Radiation pressure and gas drag forces on a melamine-formaldehyde microsphere in a dusty plasma. Phys. Plasmas 10 (1), 920.Google Scholar
Merlino, R. L., Barkan, A., Thompson, C. & D’angelo, N. 1998 Laboratory studies of waves and instabilities in dusty plasmas. Phys. Plasmas 5 (5), 16071614.Google Scholar
Merlino, R. L. 2014 25 years of dust acoustic waves. J. Plasma Phys. 80 (6), 773786.Google Scholar
Praburam, G. & Goree, J. 1996 Experimental observation of very low-frequency macroscopic modes in a dusty plasma. Phys. Plasmas 3 (4), 12121219.Google Scholar
Rao, N. N., Shukla, P. K. & Yu, M. Y. 1990 Dust-acoustic waves in dusty plasmas. Planet. Space Sci. 38 (4), 543546.Google Scholar
Saffman, P. G. 1981 Dynamics of vorticity. J. Fluid Mech. 106, 4958.Google Scholar
Samarian, A., Vaulina, O., Tsang, W. & James, B. W. 2002 Formation of vertical and horizontal dust vortexes in an RF-discharge plasma. Phys. Scr. 2002 (T98), 123.Google Scholar
Samsonov, D. & Goree, J. 1999 Instabilities in a dusty plasma with ion drag and ionization. Phys. Rev. E 59 (1), 1047.Google Scholar
Schulz, G. J. & Brown, S. C. 1955 Microwave study of positive ion collection by probes. Phys. Rev. 98, 16421649.Google Scholar
Talbot, L. & Chou, Y. S. 1969 Langmuir probe response in the transition regime. In Rarefied Gas Dynamics, vol. II, pp. 17231737. Academic.Google Scholar
Taylor, Z. J., Gurka, R., Kopp, G. A. & Liberzon, A. 2010 Long-duration time-resolved PIV to study unsteady aerodynamics. IEEE Trans. Instrument. Meas. 59 (12), 32623269.Google Scholar
Thomas, E. Jr. 1999 Direct measurements of two-dimensional velocity profiles in direct current glow discharge dusty plasmas. Phys. Plasmas 6 (7), 26722675.Google Scholar
Thomas, E. Jr., Avinash, K. & Merlino, R. L. 2004 Probe induced voids in a dusty plasma. Phys. Plasmas 11 (5), 17701774.Google Scholar
Tichý, M., S̃ícha, M., David, P. & David, T. 1994 A collisional model of the positive ion collection by a cylindrical Langmuir probe. Contrib. Plasma Phys. 34 (1), 5968.Google Scholar
Tsytovich, V. N., Vladimirov, S. V., Morfill, G. E. & Goree, J. 2001 Theory of collision-dominated dust voids in plasmas. Phys. Rev. E 63, 056609.Google Scholar
Vaulina, O. S., Petrov, O. F., Fortov, V. E., Morfill, G. E., Thomas, H. M., Semenov, Y. P., Ivanov, A. I., Krikalev, S. K. & Gidzenko, Y. P. 2004 Analysis of dust vortex dynamics in gas discharge plasma. Phys. Scr. 2004 (T107), 224.Google Scholar
Vaulina, O. S., Samarian, A. A., Nefedov, A. P. & Fortov, V. E. 2001 Self-excited motion of dust particles in a inhomogeneous plasma. Phys. Lett. A 289 (4), 240244.Google Scholar
Williams, J. D. 2016 Application of particle image velocimetry to dusty plasma systems. J. Plasma Phys. 82 (3), 615820302.Google Scholar
Zakrzewski, Z. & Kopiczynski, T. 1974 Effect of collisions on positive ion collection by a cylindrical Langmuir probe. Plasma Physics 16 (12), 1195.Google Scholar
Supplementary material: File

Bose et al. supplementary material

Bose et al. supplementary material 1

Download Bose et al. supplementary material(File)
File 28.6 MB