Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-27T11:24:10.681Z Has data issue: false hasContentIssue false

Dust ion acoustic rogue waves in superthermal warm ion plasma

Published online by Cambridge University Press:  18 February 2015

Shalini
Affiliation:
Department of Physics, Guru Nanak Dev University, Amritsar-143005, India
N. S. Saini*
Affiliation:
Department of Physics, Guru Nanak Dev University, Amritsar-143005, India
*
Email address for correspondence: [email protected]

Abstract

The properties of dust ion acoustic rogue waves (DIARWs) in an unmagnetized collisionless plasma system composed of charged dust grains, superthermal electrons and warm ions as a fluid are studied. The multiple scale perturbation method is used to derive a nonlinear Schrödinger equation (NLSE) for DIARWs. From the coefficients of nonlinearity and dispersion, we have determined the critical wave number threshold kcr at which modulational instability sets in. This critical wave number depends on the various plasma parameters, viz. superthermality of electrons, ion temperature and dust concentration. Within the modulational instability region, a random perturbation of amplitude grows and thus, creates DIARWs. It is found that DIARWs are significantly affected by electron superthermality (via κ), ion temperature (via σ) and dust concentration (via f). In view of the crucial importance of DIARWs in space environments, our results may be useful in understanding the basic features of DIARWs that may occur in space plasmas.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abdelsalam, U. M. 2012 Solitary and freak waves in superthermal plasma with ion jet. J. Plasma Phys. 79, 287294. doi:10.1017/S0022377812000992.CrossRefGoogle Scholar
Abdelsalam, U. M., Moslem, W. M., Khater, A. H. and Shukla, P. K. 2011 Solitary and freak waves in a dusty plasma with negative ions. Phys. Plasmas 18, 092 305.CrossRefGoogle Scholar
Asano, N., Taniuti, T. and Yajima, N. 1969 Perturbation method for a nonlinear wave modulation. II. J. Math. Phys. 10, 2020.CrossRefGoogle Scholar
Akhmediev, N., Ankiewicz, A. and Soto-Crespo, J. M. 2009 Rogue waves and rational solutions of the nonlinear Schrödinger equation. Phys. Rev. E 80, 026 601.CrossRefGoogle ScholarPubMed
Akhmediev, N., Ankiewicz, A. and Taki, M. 2009 Waves that appear from nowhere and disappear without trace. Phys. Lett. A 373, 675678.CrossRefGoogle Scholar
Akhmediev, N., Soto-Crespo, J. M. and Ankiewicz, A. 2009a How to excite a rogue waves? Phys. Rev. A 80, 043 818.CrossRefGoogle Scholar
Akhmediev, N., Soto-Crespo, J. M. and Ankiewicz, A. 2009b Extreme waves that appear from nowhere: on the nature of rogue waves. Phys. Lett. A 373, 21372145.CrossRefGoogle Scholar
Ankiewicz, A., Devine, N. and Akhmediev, N. 2009 Are rogue waves robust against perturbations? Phys. Lett. A 373, 39974000.CrossRefGoogle Scholar
Bailung, H., Sharma, S. K. and Nakamura, Y. 2011 Observation of Peregrine solitons in a multicomponent plasma with pegative ions. Phys. Rev. Lett. 107, 255 005.CrossRefGoogle Scholar
Bailung, H. and Nakamura, Y. 1993 Observation of modulational instability in a multi-component plasma with negative ions. J. Plasma Phys. 50, 231242.CrossRefGoogle Scholar
Bains, A. S., Li, B. and Xia, L.-D. 2014 Kinetic Alfvén solitary and rogue waves in superthermal plasmas. Phys. Plasmas 21, 032 123.CrossRefGoogle Scholar
Baluku, T. K., Hellberg, M. A., Kourakis, I. and Saini, N. S. 2010 Dust ion acoustic solitons in a plasma with kappa-distributed electrons. Phys. Plasmas 17, 053 702.CrossRefGoogle Scholar
Barbosa, D. D. and Kurth, W. S. 1993 On the generation of plasma waves in Saturn's inner magnetospheres. J. Geophys. Res. 98, 93519356 doi:10.1029/93JA00477.CrossRefGoogle Scholar
Barkan, A., DAngelo, N. and Merlino, R. 1996 Experiments on ion-acoustic waves in dusty plasmas. Planet. Space Sci. 44, 239242.CrossRefGoogle Scholar
Barkan, A., Merlino, R. L. and D'Angelo, N. 1995 Laboratory observation of the dust?acoustic wave mode. Phys. Plasmas 2, 3563.CrossRefGoogle Scholar
Benjamin, T. B. and Feir, J. E. 1967 The disintegration of wave trains on deep water Part 1. Theory. J. Fluid Mech. 27, 417430.CrossRefGoogle Scholar
Bespalov, V. I. and Talanov, V. I. 1966 Filamentary structure of light beams in nonlinear liquids. Zh. Eksp. Teor. Fiz. Pisma Red. 3, 471.Google Scholar
Binham, S. 2008 Freak waves. In: Selected Topics in Physics: Intelligent Designs, University of Massachusetts (ed. Fernandez, J. P.). Amherst, Massachusetts, pp. 4754. http://issuu.com/mauress/docs/intelligentdesigns/66.Google Scholar
Bludov, Yu. V., Konotop, V. V. and Akhmediev, N. 2009 Matter rogue waves. Phys. Rev. A 80, 033 610.CrossRefGoogle Scholar
Chabchoub, A., Hoffmann, N. P. and Akhmediev, N. 2011 Rogue wave observation in a water wave tank. Phys. Rev. Lett. 106, 204 502.CrossRefGoogle Scholar
Chabchoub, A., Hoffmann, N. P. and Akhmediev, N. 2012 Observation of rogue wave holes in a water wave tank. J. Geophys. Res. 117, C00J02, 15.CrossRefGoogle Scholar
Clamond, D., Francius, M., Grue, J. and Kharif, C. 2006 Long time interaction of envelope solitons and freak wave formations. Eur. J. Mech. B (Fluids) 25, 536553.CrossRefGoogle Scholar
Dysthe, K. B. and Trulsen, K. 1999 Note on breather type solutions of the NLS as models for freak waves. Phys. Scr. T 82, 4852.CrossRefGoogle Scholar
El-Awady, E. I. and Moslem, W. M. 2011 On a plasma having nonextensive electrons and positrons: rogue and solitary wave propagation. Phys. Plasmas 18, 082 306.CrossRefGoogle Scholar
Eliasson, B. and Shukla, P. K. 2010 Numerical investigation of the instability and nonlinear evolution of narrow-band directional ocean waves. Phys. Rev. Lett. 105, 014 501.CrossRefGoogle ScholarPubMed
El-Wakil, S. A., Abulwafa Essam, M., El-hanbaly, A. and El-Shewy, E. K. 2014 Rogue waves for Kadomstev–Petviashvili equation in electron-positron-ion plasma. Astrophys. Space Sci. 353, 501 506.CrossRefGoogle Scholar
Ganshin, A. N., Efimov, V. B., Kolmakov, G. V., Mezhov-Deglin, L. P. and McClintock, P. V. E. 2008 Observation of an inverse energy cascade in developed acoustic turbulence in superfluid helium. Phys. Rev. Lett. 101, 065 303.CrossRefGoogle ScholarPubMed
Guo, S., Mei, L. and Shi, W. 2013 Rogue wave triplets in anion-beam dusty plasma with superthermal electrons and negative ions. Phys. Lett. A 377, 21182125.CrossRefGoogle Scholar
Hellberg, M. A., Mace, R. L., Baluku, T. K., Kourakis, I. and Saini, N. S. 2007 Phys. Plasmas 14, 110 702.Google Scholar
Hellberg, M. A., Mace, R. L., Baluku, T. K., Kourakis, I. and Saini, N. S. 2009 Comment on ‘Mathematical and physical aspects of Kappa velocity distribution’. Phys. Plasmas 16, 094 701.CrossRefGoogle Scholar
Horanyi, M., Morfill, G. E. and Grun, E. 1993 Mechanism for the acceleration and ejection of dust grains from Jupiter's magnetosphere. Nature 363, 144146.CrossRefGoogle Scholar
Ichikawa, Y. H., Imamura, T. and Taniuti, T. 1972 Nonlinear wave modulation in collisionless plasmas.. J. Phys. Soc. Jpn 33, 189197.CrossRefGoogle Scholar
Ichikawa, Y. H. and Taniuti, T. 1973 Nonlinear wave modulation with account of the nonlinear landau damping. J. Phys. Soc. Jpn 34, 513521.CrossRefGoogle Scholar
Janssen, P. A. E. M. 2003 Nonlinear four-wave interactions and freak waves. J. Phys. Oceanogr. 33, 863884.2.0.CO;2>CrossRefGoogle Scholar
Kharif, C., Pelinovsky, E. and Slunyaev, A. 2009 Rogue Waves in the Ocean. Berlin: Springer-Verlag.Google Scholar
Kibler, B., Fatome, J., Finot, C., Millot, G., Dias, F., Genty, G., Akhmediev, N. and Dudley, J. M. 2010 The Peregrine soliton in nonlinear fibre optics. Nature Phys. 6, 790795.CrossRefGoogle Scholar
Kim, A. H. and Merlino, R. L. 2006 Charging of dust grains in a plasma with negative ions. Phys. Plasmas 13, 052 118.CrossRefGoogle Scholar
Kourakis, I. and Shukla, P. K. 2005 Modulated dust-acoustic wave packets in a plasma with non-isothermal electrons and ions. J. Plasma Phys. 71, 185201.CrossRefGoogle Scholar
Nakamura, Y. and Bailung, H. 1999 Observation of ion acoustic shocks in a dusty plasma. Phys. Rev. Lett. 83, 16021605.CrossRefGoogle Scholar
Montina, A., Bortolozzo, U., Residori, S. and Arecchi, F. T. 2009 Non-Gaussian statistics and extreme waves in a nonlinear optical cavity. Phys. Rev. Lett. 103, 173 901.CrossRefGoogle Scholar
Moslem, W. M., Sabry, R., El-labany, S. K. and Shukla, P. K. 2011 Dust-acoustic rogue waves in a nonextensive plasma. Phys. Rev. E 84, 066 402.CrossRefGoogle Scholar
Onorato, M., Osborne, A. R., Serio, M. and Bertone, S. 2001 Freak waves in random oceanic sea states. Phys. Rev. Lett. 86, 58315834.CrossRefGoogle ScholarPubMed
Onorato, M., Proment, D. and Toffoli, A. 2011 Triggering rogue waves in opposing currents. Phys. Rev. Lett. 107, 184 502.CrossRefGoogle ScholarPubMed
Peregrine, D. H. 1983 Water waves, nonlinear Schrödinger equation and their solutions. J. Aust. Math. Soc. Ser. B Appl. Math. 25, 1643.CrossRefGoogle Scholar
Pieper, J. and Goree, J. 1996 Dispersion of plasma dust acoustic waves in the strong-coupling regime. Phys. Rev. Lett. 77, 3137.CrossRefGoogle ScholarPubMed
Rao, N. N., Shukla, P. K. and Yu, M. Y. 1990 Dust -acoustic waves in dusty plasmas. Planet Space Sci. 38, 543546.CrossRefGoogle Scholar
Ruban, V.et al. 2010 Rogue waves–towards a unifying concept?: discussions and debates. Eur. Phys. J. Spec. Top. 185, 515.CrossRefGoogle Scholar
Ruderman, M. S. 2010 Freak waves in laboratory and space plasmas. Eur. Phys. J. Spec. Top. 185, 5766.CrossRefGoogle Scholar
Saini, N. S. and Kourakis, I. 2008 Dust-acoustic wave modulation in the presence of superthermal ions. Phys. Plasmas 15, 123 701.CrossRefGoogle Scholar
Sanuki, H., Shimizu, K. and Todoroki, J. 1972 Effects of Landau damping on nonlinear wave modulation in plasma. J. Phys. Soc. Jpn 33, 198205.CrossRefGoogle Scholar
Schippers, P.et al. 2008 Multi-instrument analysis of electron populations in Saturn's magnetosphere. J. Geophys. Res. 113, A07 208. doi: 10.1029/2008JA013098.CrossRefGoogle Scholar
Sharma, S. K. and Bailung, H. 2013 Observation of hole Peregrine soliton in multicomponent plasma with critical density of negative ions. J. Geophys. Res. Space Phys. 118, 919924. doi: 10.1002/jgra.50111.CrossRefGoogle Scholar
Shats, M., Punzmann, H. and Xia, H. 2010 Capillary rogue waves. Phys. Rev. Lett. 104, 104 503.CrossRefGoogle ScholarPubMed
Shukla, P. K., Kourakis, I., Eliasson, B., Marklund, M. and Stenflo, L. 2006a Instability and evolution of nonlinearly interacting water waves. Phys. Rev. Lett. 97, 094 501.CrossRefGoogle ScholarPubMed
Shukla, P. K., Kourakis, I., Eliasson, B., Marklund, M. and Stenflo, L. 2006b Instability and evolution of nonlinearly interacting water waves. Phys. Rev. Lett. 97, 094 501.CrossRefGoogle ScholarPubMed
Shukla, P. K. and Mamun, A. A. 2002 Introduction to Dusty Plasma Physics. Bristol: Institute of Physics.CrossRefGoogle Scholar
Shukla, P. K. and Moslem, W. M. 2012 Alfvénic rogue waves. Phys. Lett. A 376, 11251128.CrossRefGoogle Scholar
Shukla, P. K. and Silin, V. P. 1992 Dust ion-acoustic wave. Phys. Scr. 45, 508.CrossRefGoogle Scholar
Sittler, E. C. Jr., Ogilvie, K. W. and Scudder, J. D. 1983 Survey of low-energy plasma electrons in Saturn's magnetosphere: voyagers 1 and 2. J. Geophys. Res. 88, 8847.CrossRefGoogle Scholar
Stenflo, L. and Marklund, M. 2010 Rogue waves in the atmosphere. J. Plasma Phys. 76, 293295.CrossRefGoogle Scholar
Summer, D. and Thorne, R. M. 1991 The modified plasma dispersion function. Phys. Fluids B 3, 1835.Google Scholar
Taniuti, T. and Yajima, N. 1969 Perturbation method for a nonlinear wave modulation. I. J. Math. Phys. 10, 1369.CrossRefGoogle Scholar
Ten, I. and Tomita, H. 2006 Simulation of the ocean waves and appearance of freak waves, Reports of RIAM symposium no. 17SP1-2. In: Proc. Symp. held at Chikushi Campus, Kyushu University, Kasuga, Fukuoka, Japan, 10–11 March.Google Scholar
Turing, A. M. 1952 The chemical basis of morphogenesis. Phil. Trans. R. Soc. London B 237, 3772.Google Scholar
Vasyliunas, V. M. 1968 A survey of low-energy electrons in the evening sector of the magnetosphere with OGO 1 and OGO 3. J. Geophys. Res. 73, 28392884. doi:10.1029/JA073i009p02839.CrossRefGoogle Scholar
Veldes, G. P., Borhanian, J., McKerr, M., Saxena, V., Frantzeskakis, D. J. and Kourakis, I. 2013 Electromagnetic rogue waves in beam-plasma interactions. J. Opt. 15, 064 003.CrossRefGoogle Scholar
Verheest, F. 2000. Waves in Dusty Space Plasmas. Dordrecht: Kluwer.CrossRefGoogle Scholar
Voronovich, V. V., Shrira, V. I. and Thomas, G. 2008 Can bottom friction suppress ‘freak wave' formation? J. Fluid Mech. 604, 263296.CrossRefGoogle Scholar
Yan, Z. 2010 Financial rogue waves. Commun. Theor. Phys. 54, 947.CrossRefGoogle Scholar