Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-23T04:15:04.786Z Has data issue: false hasContentIssue false

Dust and plasma properties measured using two confined particles

Published online by Cambridge University Press:  06 June 2016

T. E. Sheridan*
Affiliation:
Department of Physics and Astronomy, Ohio Northern University, Ada, OH 45810, USA
Nicholas R. Weiner
Affiliation:
Department of Physics and Astronomy, Ohio Northern University, Ada, OH 45810, USA
Thomas E. Steinberger
Affiliation:
Department of Physics and Astronomy, Ohio Northern University, Ada, OH 45810, USA
*
Email address for correspondence: [email protected]

Abstract

We consider two isolated, interacting dust particles confined in plasma. Measurements of normal mode frequencies are used to determine the dust charge, the Debye shielding length and the anisotropy of the confining potential well. For dust particles confined near the sheath edge, the vertical electric field and an effective electron temperature are also determined. This method is used to characterize the sheath above a short rectangular trench in the powered electrode of a radio-frequency discharge.

Type
Research Article
Copyright
© Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chen, F. F. 1974 Introduction to Plasma Physics. pp. 244247. Plenum.Google Scholar
Homann, A., Melzer, A. & Piel, A. 1999 Measuring the charge on single particles by laser-excited resonances in plasma crystals. Phys. Rev. E 59, R3835R3838.Google Scholar
Konopka, U., Morfill, G. E. & Ratke, L. 2000 Measurement of the interaction potential of microspheres in the sheath of a rf discharge. Phys. Rev. Lett. 84, 891894.Google Scholar
Lampe, M., Joyce, G., Ganguli, G. & Gavrishchaka, V. 2000 Interactions between dust grains in a dusty plasma. Phys. Plasmas 7, 38513861.Google Scholar
Ludwig, P., Miloch, W. J., Kählert, H. & Bonitz, M. 2012 On the wake structure in streaming complex plasmas. New J. Phys. 14, 053016+29.Google Scholar
Melzer, A. 2006 Zigzag transition of finite dust cluster. Phys. Rev. E 73, 056404+7.Google Scholar
Sheridan, T. E. 2009a Effect of radio frequency discharge power on dusty plasma parameters. J. Appl. Phys. 106, 033303+6.Google Scholar
Sheridan, T. E. 2009b Analytical expression for the sheath edge around corner cathodes. J. Phys. D: Appl. Phys. 42, 015212+7.Google Scholar
Sheridan, T. E. & Goree, J. 1989 Analytic expression for the electric potential in the plasma sheath. IEEE Trans. Plasma Sci. 17, 884888.Google Scholar
Sheridan, T. E., Katschke, M. R. & Wells, K. D. 2007 Measurement of electric field and gradient in the plasma sheath using clusters of floating microspheres. Rev. Sci. Instrum. 78, 023502+5.Google Scholar
Sheridan, T. E. & Theisen, W. L. 2006 Study of two-dimensional Debye clusters using Brownian motion. Phys. Plasmas 13, 062110+8.Google Scholar
Sheridan, T. E. & Wells, K. D. 2010 Dimensional phase transition in small Yukawa clusters. Phys. Rev. E 81, 016404+8.Google Scholar
Ticoş, C. M., Dyson, A. & Smith, P. W. 2004 The charge on falling dust particles in a rf plasma with dc negative bias. Plasma Sources Sci. Technol. 13, 395402.Google Scholar